Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Teru Hideshima, Ph.D., M.D.

Co-Author

This page shows the publications co-authored by Teru Hideshima and Dharminder Chauhan.
Connection Strength

5.317
  1. p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017 03 09; 129(10):1308-1319.
    View in: PubMed
    Score: 0.178
  2. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012 Sep 11; 22(3):345-58.
    View in: PubMed
    Score: 0.132
  3. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010 May 06; 115(18):3772-5.
    View in: PubMed
    Score: 0.111
  4. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009 Oct 06; 16(4):309-23.
    View in: PubMed
    Score: 0.108
  5. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009 Jul 30; 114(5):1046-52.
    View in: PubMed
    Score: 0.105
  6. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood. 2009 May 21; 113(21):5228-36.
    View in: PubMed
    Score: 0.103
  7. Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol. 2008; 615:251-60.
    View in: PubMed
    Score: 0.095
  8. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 2008 Feb 01; 111(3):1654-64.
    View in: PubMed
    Score: 0.094
  9. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol. 2007 Sep; 138(6):783-91.
    View in: PubMed
    Score: 0.093
  10. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007 Feb 01; 109(3):1220-7.
    View in: PubMed
    Score: 0.087
  11. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006 Oct 01; 12(19):5887-94.
    View in: PubMed
    Score: 0.087
  12. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006 May 15; 107(10):4053-62.
    View in: PubMed
    Score: 0.083
  13. Intracellular protein degradation and its therapeutic implications. Clin Cancer Res. 2005 Dec 15; 11(24 Pt 1):8530-3.
    View in: PubMed
    Score: 0.083
  14. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005 Nov; 8(5):407-19.
    View in: PubMed
    Score: 0.082
  15. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005 Sep 15; 65(18):8350-8.
    View in: PubMed
    Score: 0.081
  16. Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol. 2005 Sep 10; 23(26):6345-50.
    View in: PubMed
    Score: 0.081
  17. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A. 2005 Jun 14; 102(24):8567-72.
    View in: PubMed
    Score: 0.080
  18. Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene. 2005 Apr 28; 24(19):3121-9.
    View in: PubMed
    Score: 0.079
  19. Proteasome inhibitor therapy in multiple myeloma. . 2005 Apr; 4(4):686-92.
    View in: PubMed
    Score: 0.079
  20. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol. 2005; 45:465-76.
    View in: PubMed
    Score: 0.077
  21. Cytokines and signal transduction. Best Pract Res Clin Haematol. 2005; 18(4):509-24.
    View in: PubMed
    Score: 0.077
  22. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene. 2004 Nov 18; 23(54):8766-76.
    View in: PubMed
    Score: 0.077
  23. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood. 2004 Oct 15; 104(8):2458-66.
    View in: PubMed
    Score: 0.075
  24. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene. 2004 Apr 29; 23(20):3597-602.
    View in: PubMed
    Score: 0.074
  25. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood. 2004 Apr 15; 103(8):3158-66.
    View in: PubMed
    Score: 0.072
  26. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res. 2003 Dec 01; 63(23):8428-36.
    View in: PubMed
    Score: 0.072
  27. Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene. 2003 Nov 27; 22(54):8797-801.
    View in: PubMed
    Score: 0.072
  28. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene. 2003 Nov 20; 22(52):8386-93.
    View in: PubMed
    Score: 0.072
  29. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 2003 Oct 01; 63(19):6174-7.
    View in: PubMed
    Score: 0.071
  30. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene. 2003 Sep 18; 22(40):6296-300.
    View in: PubMed
    Score: 0.071
  31. Apoptotic signaling in multiple myeloma: therapeutic implications. Int J Hematol. 2003 Aug; 78(2):114-20.
    View in: PubMed
    Score: 0.070
  32. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood. 2003 Nov 01; 102(9):3379-86.
    View in: PubMed
    Score: 0.070
  33. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2003 May 16; 278(20):17593-6.
    View in: PubMed
    Score: 0.068
  34. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood. 2003 May 01; 101(9):3606-14.
    View in: PubMed
    Score: 0.067
  35. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003 Feb 15; 101(4):1530-4.
    View in: PubMed
    Score: 0.066
  36. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood. 2002 Sep 15; 100(6):2187-94.
    View in: PubMed
    Score: 0.066
  37. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood. 2003 Jan 15; 101(2):703-5.
    View in: PubMed
    Score: 0.066
  38. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. . 2002 May; 1(7):539-44.
    View in: PubMed
    Score: 0.064
  39. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002 May 10; 277(19):16639-47.
    View in: PubMed
    Score: 0.064
  40. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene. 2002 Feb 21; 21(9):1346-58.
    View in: PubMed
    Score: 0.063
  41. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2021 Sep; 2(5):468-483.
    View in: PubMed
    Score: 0.060
  42. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics. 2018 12; 15(12):1033-1052.
    View in: PubMed
    Score: 0.051
  43. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017 12; 36(4):561-584.
    View in: PubMed
    Score: 0.047
  44. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clin Cancer Res. 2016 Dec 15; 22(24):6099-6109.
    View in: PubMed
    Score: 0.043
  45. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood. 2016 Mar 03; 127(9):1138-50.
    View in: PubMed
    Score: 0.041
  46. Combination of a Selective HSP90a/ß Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS One. 2015; 10(12):e0143847.
    View in: PubMed
    Score: 0.041
  47. Novel targeted agents in the treatment of multiple myeloma. Hematol Oncol Clin North Am. 2014 Oct; 28(5):903-25.
    View in: PubMed
    Score: 0.038
  48. Intracellular NAD? depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013 Aug 15; 122(7):1243-55.
    View in: PubMed
    Score: 0.035
  49. New proteasome inhibitors in myeloma. Curr Hematol Malig Rep. 2012 Dec; 7(4):258-66.
    View in: PubMed
    Score: 0.033
  50. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012 Oct 25; 120(17):3519-29.
    View in: PubMed
    Score: 0.033
  51. Managing multiple myeloma: the emerging role of novel therapies and adapting combination treatment for higher risk settings. Br J Haematol. 2011 Sep; 154(6):755-62.
    View in: PubMed
    Score: 0.030
  52. Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent Aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. Clin Cancer Res. 2011 May 15; 17(10):3259-71.
    View in: PubMed
    Score: 0.030
  53. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010 May; 149(4):537-49.
    View in: PubMed
    Score: 0.028
  54. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A. 2010 Mar 16; 107(11):5124-9.
    View in: PubMed
    Score: 0.028
  55. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res. 2009 Dec 01; 15(23):7153-60.
    View in: PubMed
    Score: 0.027
  56. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009 Oct; 7(9):947-60.
    View in: PubMed
    Score: 0.027
  57. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol. 2009 Dec; 147(5):672-6.
    View in: PubMed
    Score: 0.027
  58. Bortezomib in the management of multiple myeloma. Cancer Manag Res. 2009 Sep 08; 1:107-17.
    View in: PubMed
    Score: 0.027
  59. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009 Jun 15; 69(12):5082-90.
    View in: PubMed
    Score: 0.026
  60. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009 Jul 09; 114(2):371-9.
    View in: PubMed
    Score: 0.026
  61. Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol. 2009 Apr; 46(2):166-75.
    View in: PubMed
    Score: 0.026
  62. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther. 2009 Jan; 8(1):26-35.
    View in: PubMed
    Score: 0.026
  63. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood. 2009 Feb 12; 113(7):1513-21.
    View in: PubMed
    Score: 0.025
  64. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 2008 Dec 15; 112(13):5095-102.
    View in: PubMed
    Score: 0.025
  65. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008 Jul 01; 68(13):5216-25.
    View in: PubMed
    Score: 0.025
  66. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. Br J Haematol. 2008 May; 141(5):598-606.
    View in: PubMed
    Score: 0.024
  67. Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2008 May 01; 111(9):4752-63.
    View in: PubMed
    Score: 0.024
  68. The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol. 2007 Dec; 20(4):597-612.
    View in: PubMed
    Score: 0.024
  69. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 2007 Dec; 21(6):1007-34, vii-viii.
    View in: PubMed
    Score: 0.024
  70. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007 Oct; 139(1):55-63.
    View in: PubMed
    Score: 0.023
  71. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007 Oct 01; 13(19):5903-9.
    View in: PubMed
    Score: 0.023
  72. Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol. 2007 Jul; 35(7):1038-46.
    View in: PubMed
    Score: 0.023
  73. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. . 2007 Jun; 6(6):1718-27.
    View in: PubMed
    Score: 0.023
  74. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007 Sep 01; 110(5):1656-63.
    View in: PubMed
    Score: 0.023
  75. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007 Jul 15; 110(2):709-18.
    View in: PubMed
    Score: 0.023
  76. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007 Feb 15; 67(4):1680-8.
    View in: PubMed
    Score: 0.022
  77. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007; 317-23.
    View in: PubMed
    Score: 0.022
  78. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A. 2006 Dec 19; 103(51):19478-83.
    View in: PubMed
    Score: 0.022
  79. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood. 2007 Feb 15; 109(4):1669-77.
    View in: PubMed
    Score: 0.022
  80. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01; 66(13):6675-82.
    View in: PubMed
    Score: 0.021
  81. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006 Jul; 134(2):145-56.
    View in: PubMed
    Score: 0.021
  82. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006 Nov 15; 108(10):3441-9.
    View in: PubMed
    Score: 0.021
  83. FQPD, a novel immunomodulatory drug, has significant in vitro activity in multiple myeloma. Br J Haematol. 2006 Mar; 132(6):698-704.
    View in: PubMed
    Score: 0.021
  84. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15; 65(24):11712-20.
    View in: PubMed
    Score: 0.021
  85. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006 Feb 01; 107(3):1092-100.
    View in: PubMed
    Score: 0.020
  86. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene. 2005 Sep 01; 24(38):5888-96.
    View in: PubMed
    Score: 0.020
  87. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res. 2005 Aug 15; 65(16):7478-84.
    View in: PubMed
    Score: 0.020
  88. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood. 2005 Sep 01; 106(5):1794-800.
    View in: PubMed
    Score: 0.020
  89. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood. 2005 Aug 01; 106(3):1042-7.
    View in: PubMed
    Score: 0.020
  90. Targeting signalling pathways for the treatment of multiple myeloma. Expert Opin Ther Targets. 2005 Apr; 9(2):359-81.
    View in: PubMed
    Score: 0.020
  91. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood. 2005 Jul 15; 106(2):706-12.
    View in: PubMed
    Score: 0.020
  92. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005 Jan; 128(2):192-203.
    View in: PubMed
    Score: 0.019
  93. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res. 2004 Dec 01; 64(23):8746-53.
    View in: PubMed
    Score: 0.019
  94. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res. 2004 Nov 15; 10(22):7540-6.
    View in: PubMed
    Score: 0.019
  95. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004 Oct 15; 64(20):7500-6.
    View in: PubMed
    Score: 0.019
  96. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004 Dec 15; 104(13):4188-93.
    View in: PubMed
    Score: 0.019
  97. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004 Nov 01; 104(9):2886-92.
    View in: PubMed
    Score: 0.019
  98. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004 May; 125(3):343-52.
    View in: PubMed
    Score: 0.018
  99. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004 Apr 15; 64(8):2846-52.
    View in: PubMed
    Score: 0.018
  100. Critical role for hematopoietic cell kinase (Hck)-mediated phosphorylation of Gab1 and Gab2 docking proteins in interleukin 6-induced proliferation and survival of multiple myeloma cells. J Biol Chem. 2004 May 14; 279(20):21658-65.
    View in: PubMed
    Score: 0.018
  101. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004 Mar; 5(3):221-30.
    View in: PubMed
    Score: 0.018
  102. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004 Jan 13; 101(2):540-5.
    View in: PubMed
    Score: 0.018
  103. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004 May 01; 103(9):3474-9.
    View in: PubMed
    Score: 0.018
  104. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 2003 Oct 15; 63(20):6689-96.
    View in: PubMed
    Score: 0.018
  105. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004 Mar 01; 103(5):1787-90.
    View in: PubMed
    Score: 0.018
  106. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res. 2003 Sep 15; 63(18):5850-8.
    View in: PubMed
    Score: 0.018
  107. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004 Mar 01; 103(5):1799-806.
    View in: PubMed
    Score: 0.018
  108. Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. . 2003 Sep; 2(9):825-33.
    View in: PubMed
    Score: 0.018
  109. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003 Dec 15; 102(13):4504-11.
    View in: PubMed
    Score: 0.018
  110. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood. 2003 Oct 01; 102(7):2615-22.
    View in: PubMed
    Score: 0.017
  111. Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol. 2003 May; 121(4):592-6.
    View in: PubMed
    Score: 0.017
  112. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003 Aug 15; 102(4):1435-42.
    View in: PubMed
    Score: 0.017
  113. Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol. 2003 Apr; 31(4):271-82.
    View in: PubMed
    Score: 0.017
  114. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003 May 15; 101(10):4055-62.
    View in: PubMed
    Score: 0.017
  115. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 2003 Jan 01; 63(1):18-21.
    View in: PubMed
    Score: 0.017
  116. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003 Feb 21; 278(8):5794-801.
    View in: PubMed
    Score: 0.017
  117. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003 Mar 15; 101(6):2377-80.
    View in: PubMed
    Score: 0.017
  118. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002 Nov 01; 100(9):3063-7.
    View in: PubMed
    Score: 0.017
  119. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002 Oct 29; 99(22):14374-9.
    View in: PubMed
    Score: 0.017
  120. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002 Aug 22; 21(37):5673-83.
    View in: PubMed
    Score: 0.016
  121. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. . 2002 Aug; 1(10):851-60.
    View in: PubMed
    Score: 0.016
  122. Novel biologically based therapies for multiple myeloma. Int J Hematol. 2002 Aug; 76 Suppl 1:340-1.
    View in: PubMed
    Score: 0.016
  123. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 2002 Jul 01; 62(13):3876-82.
    View in: PubMed
    Score: 0.016
  124. beta-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp Hematol. 2002 Jul; 30(7):711-20.
    View in: PubMed
    Score: 0.016
  125. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002 Jun 15; 99(12):4525-30.
    View in: PubMed
    Score: 0.016
  126. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002 Jun 01; 99(11):4079-86.
    View in: PubMed
    Score: 0.016
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.