Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Kenneth Carl Anderson, M.D.

Co-Author

This page shows the publications co-authored by Kenneth Anderson and Teru Hideshima.
Connection Strength

34.561
  1. Correction: HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget. 2021 Aug 17; 12(17):1736.
    View in: PubMed
    Score: 0.981
  2. Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers (Basel). 2021 Jan 08; 13(2).
    View in: PubMed
    Score: 0.941
  3. Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways. Leukemia. 2021 01; 35(1):177-188.
    View in: PubMed
    Score: 0.892
  4. HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget. 2017 Oct 06; 8(46):80109-80123.
    View in: PubMed
    Score: 0.738
  5. HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget. 2017 Jul 05.
    View in: PubMed
    Score: 0.738
  6. p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017 03 09; 129(10):1308-1319.
    View in: PubMed
    Score: 0.714
  7. Histone deacetylase inhibitors in the treatment for multiple myeloma. Int J Hematol. 2013 Mar; 97(3):324-32.
    View in: PubMed
    Score: 0.547
  8. Biologic impact of proteasome inhibition in multiple myeloma cells--from the aspects of preclinical studies. Semin Hematol. 2012 Jul; 49(3):223-7.
    View in: PubMed
    Score: 0.521
  9. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther. 2011 Nov; 10(11):2034-42.
    View in: PubMed
    Score: 0.498
  10. Novel therapies in MM: from the aspect of preclinical studies. Int J Hematol. 2011 Oct; 94(4):344-354.
    View in: PubMed
    Score: 0.492
  11. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010 May 06; 115(18):3772-5.
    View in: PubMed
    Score: 0.444
  12. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009 Jul 30; 114(5):1046-52.
    View in: PubMed
    Score: 0.419
  13. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood. 2009 May 21; 113(21):5228-36.
    View in: PubMed
    Score: 0.414
  14. A review of lenalidomide in combination with dexamethasone for the treatment of multiple myeloma. Ther Clin Risk Manag. 2008 Feb; 4(1):129-36.
    View in: PubMed
    Score: 0.384
  15. Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am. 2007 Dec; 21(6):1071-91, viii-ix.
    View in: PubMed
    Score: 0.379
  16. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol. 2007 Sep; 138(6):783-91.
    View in: PubMed
    Score: 0.373
  17. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007 Aug; 7(8):585-98.
    View in: PubMed
    Score: 0.371
  18. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006 Oct 01; 12(19):5887-94.
    View in: PubMed
    Score: 0.350
  19. Current therapeutic uses of lenalidomide in multiple myeloma. Expert Opin Investig Drugs. 2006 Feb; 15(2):171-9.
    View in: PubMed
    Score: 0.334
  20. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006 May 15; 107(10):4053-62.
    View in: PubMed
    Score: 0.333
  21. Intracellular protein degradation and its therapeutic implications. Clin Cancer Res. 2005 Dec 15; 11(24 Pt 1):8530-3.
    View in: PubMed
    Score: 0.331
  22. Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol. 2005 Sep 10; 23(26):6345-50.
    View in: PubMed
    Score: 0.325
  23. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A. 2005 Jun 14; 102(24):8567-72.
    View in: PubMed
    Score: 0.319
  24. Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene. 2005 Apr 28; 24(19):3121-9.
    View in: PubMed
    Score: 0.317
  25. Cytokines and signal transduction. Best Pract Res Clin Haematol. 2005; 18(4):509-24.
    View in: PubMed
    Score: 0.310
  26. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene. 2004 Nov 18; 23(54):8766-76.
    View in: PubMed
    Score: 0.307
  27. Advances in biology of multiple myeloma: clinical applications. Blood. 2004 Aug 01; 104(3):607-18.
    View in: PubMed
    Score: 0.295
  28. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res. 2003 Dec 01; 63(23):8428-36.
    View in: PubMed
    Score: 0.287
  29. Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene. 2003 Nov 27; 22(54):8797-801.
    View in: PubMed
    Score: 0.287
  30. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene. 2003 Nov 20; 22(52):8386-93.
    View in: PubMed
    Score: 0.287
  31. Novel therapeutic approaches for multiple myeloma. Immunol Rev. 2003 Aug; 194:164-76.
    View in: PubMed
    Score: 0.281
  32. Targeting proteasome inhibition in hematologic malignancies. Rev Clin Exp Hematol. 2003 Jun; 7(2):191-204.
    View in: PubMed
    Score: 0.278
  33. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2002 Dec; 2(12):927-37.
    View in: PubMed
    Score: 0.268
  34. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003 Feb 15; 101(4):1530-4.
    View in: PubMed
    Score: 0.265
  35. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood. 2003 Jan 15; 101(2):703-5.
    View in: PubMed
    Score: 0.264
  36. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. . 2002 May; 1(7):539-44.
    View in: PubMed
    Score: 0.258
  37. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002 May 10; 277(19):16639-47.
    View in: PubMed
    Score: 0.255
  38. Author Correction: The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J. 2021 Oct 06; 11(10):165.
    View in: PubMed
    Score: 0.248
  39. Corrigendum to <'Novel therapeutic strategies for multiple myeloma'> <[Experimental Hematology 2015; 43: 732-741]>. Exp Hematol. 2021 Aug 29.
    View in: PubMed
    Score: 0.246
  40. Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia. 2021 Jul 21.
    View in: PubMed
    Score: 0.244
  41. ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Sci Adv. 2021 Jun; 7(23).
    View in: PubMed
    Score: 0.242
  42. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2021 Sep; 2(5):468-483.
    View in: PubMed
    Score: 0.240
  43. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood. 2020 11 12; 136(20):2334-2345.
    View in: PubMed
    Score: 0.233
  44. Correction: Dual Inhibition of Canonical and Noncanonical NF-?B Pathways Demonstrates Significant Antitumor Activities in Multiple Myeloma. Clin Cancer Res. 2019 May 01; 25(9):2938.
    View in: PubMed
    Score: 0.209
  45. PRMT5 inhibitors on the (myeloma) road. Oncotarget. 2018 Nov 30; 9(94):36646-36647.
    View in: PubMed
    Score: 0.203
  46. The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J. 2018 08 22; 8(9):83.
    View in: PubMed
    Score: 0.199
  47. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018 09; 32(9):1932-1947.
    View in: PubMed
    Score: 0.193
  48. Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clin Cancer Res. 2017 Sep 01; 23(17):5225-5237.
    View in: PubMed
    Score: 0.182
  49. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget. 2016 Nov 22; 7(47):77326-77341.
    View in: PubMed
    Score: 0.177
  50. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proc Natl Acad Sci U S A. 2016 11 15; 113(46):13162-13167.
    View in: PubMed
    Score: 0.176
  51. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clin Cancer Res. 2016 Dec 15; 22(24):6099-6109.
    View in: PubMed
    Score: 0.171
  52. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol. 2016 Sep; 104(3):300-9.
    View in: PubMed
    Score: 0.170
  53. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun. 2016 Jan 05; 7:10258.
    View in: PubMed
    Score: 0.166
  54. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood. 2016 Mar 03; 127(9):1138-50.
    View in: PubMed
    Score: 0.166
  55. Combination of a Selective HSP90a/ß Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS One. 2015; 10(12):e0143847.
    View in: PubMed
    Score: 0.165
  56. Novel therapeutic strategies for multiple myeloma. Exp Hematol. 2015 Aug; 43(8):732-41.
    View in: PubMed
    Score: 0.160
  57. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015 Oct 15; 21(20):4607-18.
    View in: PubMed
    Score: 0.159
  58. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res. 2014 Aug 15; 74(16):4458-69.
    View in: PubMed
    Score: 0.149
  59. IKKß inhibitor in combination with bortezomib induces cytotoxicity in breast cancer cells. Int J Oncol. 2014 Apr; 44(4):1171-6.
    View in: PubMed
    Score: 0.145
  60. A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood. 2014 Mar 06; 123(10):1461-9.
    View in: PubMed
    Score: 0.145
  61. Clinical translation in multiple myeloma: from bench to bedside. Semin Oncol. 2013 Oct; 40(5):549-53.
    View in: PubMed
    Score: 0.142
  62. Intracellular NAD? depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013 Aug 15; 122(7):1243-55.
    View in: PubMed
    Score: 0.140
  63. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013 Apr 11; 121(15):2975-87.
    View in: PubMed
    Score: 0.135
  64. New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Curr Pharm Des. 2013; 19(4):734-44.
    View in: PubMed
    Score: 0.135
  65. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012 Sep 11; 22(3):345-58.
    View in: PubMed
    Score: 0.132
  66. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012 Oct 25; 120(17):3519-29.
    View in: PubMed
    Score: 0.132
  67. Lenalidomide for the treatment of relapsed and refractory multiple myeloma. Cancer Manag Res. 2012; 4:253-68.
    View in: PubMed
    Score: 0.131
  68. Dual inhibition of canonical and noncanonical NF-?B pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res. 2012 Sep 01; 18(17):4669-81.
    View in: PubMed
    Score: 0.131
  69. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br J Haematol. 2012 Aug; 158(4):472-80.
    View in: PubMed
    Score: 0.129
  70. Perifosine , an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012 May; 8(5):623-33.
    View in: PubMed
    Score: 0.129
  71. Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents. Br J Haematol. 2012 Jun; 157(6):718-31.
    View in: PubMed
    Score: 0.129
  72. The potential benefits of participating in early-phase clinical trials in multiple myeloma: long-term remission in a patient with relapsed multiple myeloma treated with 90 cycles of lenalidomide and bortezomib. Eur J Haematol. 2012 May; 88(5):446-9.
    View in: PubMed
    Score: 0.127
  73. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol. 2011 Nov 10; 29(32):4243-9.
    View in: PubMed
    Score: 0.124
  74. Managing multiple myeloma: the emerging role of novel therapies and adapting combination treatment for higher risk settings. Br J Haematol. 2011 Sep; 154(6):755-62.
    View in: PubMed
    Score: 0.122
  75. Multiple myeloma: biology of the disease. Blood Rev. 2010 Nov; 24 Suppl 1:S5-11.
    View in: PubMed
    Score: 0.116
  76. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010 Oct 28; 116(17):3227-37.
    View in: PubMed
    Score: 0.114
  77. Lenalidomide in multiple myeloma: an evidence-based review of its role in therapy. Core Evid. 2010 Jun 15; 4:215-45.
    View in: PubMed
    Score: 0.113
  78. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood. 2010 Sep 02; 116(9):1460-8.
    View in: PubMed
    Score: 0.113
  79. The treatment of multiple myeloma patients not eligible for asct. Mediterr J Hematol Infect Dis. 2010 May 03; 2(2):e2010009.
    View in: PubMed
    Score: 0.112
  80. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 2010 Aug 05; 116(5):679-86.
    View in: PubMed
    Score: 0.112
  81. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood. 2010 Jun 24; 115(25):5202-13.
    View in: PubMed
    Score: 0.112
  82. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009 Oct 06; 16(4):309-23.
    View in: PubMed
    Score: 0.108
  83. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol. 2009 Dec 01; 27(34):5713-9.
    View in: PubMed
    Score: 0.108
  84. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009 Jun 15; 15(12):4028-37.
    View in: PubMed
    Score: 0.105
  85. Emerging therapies for multiple myeloma. Expert Opin Emerg Drugs. 2009 Mar; 14(1):99-127.
    View in: PubMed
    Score: 0.103
  86. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells. Blood. 2009 Apr 30; 113(18):4309-18.
    View in: PubMed
    Score: 0.103
  87. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther. 2009 Jan; 8(1):26-35.
    View in: PubMed
    Score: 0.102
  88. SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009 Jan 22; 113(4):846-55.
    View in: PubMed
    Score: 0.101
  89. Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther. 2008 Jul; 8(7):1053-72.
    View in: PubMed
    Score: 0.099
  90. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008 Jul 01; 68(13):5216-25.
    View in: PubMed
    Score: 0.099
  91. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008 Apr 15; 14(8):2387-95.
    View in: PubMed
    Score: 0.097
  92. Fatty acid synthase is a novel therapeutic target in multiple myeloma. Br J Haematol. 2008 May; 141(5):659-71.
    View in: PubMed
    Score: 0.097
  93. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. Br J Haematol. 2008 May; 141(5):598-606.
    View in: PubMed
    Score: 0.097
  94. Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol. 2008; 615:251-60.
    View in: PubMed
    Score: 0.095
  95. The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol. 2007 Dec; 20(4):597-612.
    View in: PubMed
    Score: 0.095
  96. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 2007 Dec; 21(6):1007-34, vii-viii.
    View in: PubMed
    Score: 0.095
  97. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 2008 Feb 01; 111(3):1654-64.
    View in: PubMed
    Score: 0.095
  98. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007 Oct; 139(1):55-63.
    View in: PubMed
    Score: 0.094
  99. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008 Aug 15; 112(4):1329-37.
    View in: PubMed
    Score: 0.094
  100. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood. 2007 Nov 15; 110(10):3744-52.
    View in: PubMed
    Score: 0.093
  101. Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol. 2007 Jul; 35(7):1038-46.
    View in: PubMed
    Score: 0.092
  102. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. . 2007 Jun; 6(6):1718-27.
    View in: PubMed
    Score: 0.092
  103. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007 Sep 01; 110(5):1656-63.
    View in: PubMed
    Score: 0.091
  104. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007 Jul 15; 110(2):709-18.
    View in: PubMed
    Score: 0.090
  105. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007 Feb 15; 67(4):1680-8.
    View in: PubMed
    Score: 0.090
  106. The emerging role of novel therapies for the treatment of relapsed myeloma. J Natl Compr Canc Netw. 2007 Feb; 5(2):149-62.
    View in: PubMed
    Score: 0.090
  107. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007; 317-23.
    View in: PubMed
    Score: 0.089
  108. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol. 2007 Feb; 136(3):414-23.
    View in: PubMed
    Score: 0.089
  109. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A. 2006 Dec 19; 103(51):19478-83.
    View in: PubMed
    Score: 0.089
  110. Non-steroidal anti-inflammatory drug therapy for chronic lymphocytic leukemia. Leuk Lymphoma. 2006 Dec; 47(12):2445-6.
    View in: PubMed
    Score: 0.088
  111. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007 Feb 01; 109(3):1220-7.
    View in: PubMed
    Score: 0.088
  112. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood. 2007 Feb 15; 109(4):1669-77.
    View in: PubMed
    Score: 0.088
  113. Proteasome inhibition as a new therapeutic principle in hematological malignancies. Curr Drug Targets. 2006 Oct; 7(10):1341-7.
    View in: PubMed
    Score: 0.087
  114. Recent advances in the treatment of Multiple Myeloma. Curr Pharm Biotechnol. 2006 Oct; 7(5):381-93.
    View in: PubMed
    Score: 0.087
  115. Therapeutic use of immunomodulatory drugs in the treatment of multiple myeloma. Expert Rev Anticancer Ther. 2006 Sep; 6(9):1239-47.
    View in: PubMed
    Score: 0.087
  116. Lenalidomide in multiple myeloma. Expert Rev Anticancer Ther. 2006 Aug; 6(8):1165-73.
    View in: PubMed
    Score: 0.086
  117. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006 Nov 15; 108(10):3458-64.
    View in: PubMed
    Score: 0.086
  118. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006 Jul; 134(2):145-56.
    View in: PubMed
    Score: 0.086
  119. In vivo and in vitro cytotoxicity of R-etodolac with dexamethasone in glucocorticoid-resistant multiple myeloma cells. Br J Haematol. 2006 Jul; 134(1):37-44.
    View in: PubMed
    Score: 0.086
  120. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01; 66(13):6675-82.
    View in: PubMed
    Score: 0.086
  121. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006 Nov 15; 108(10):3441-9.
    View in: PubMed
    Score: 0.085
  122. FQPD, a novel immunomodulatory drug, has significant in vitro activity in multiple myeloma. Br J Haematol. 2006 Mar; 132(6):698-704.
    View in: PubMed
    Score: 0.084
  123. Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol. 2006 Feb; 132(4):385-97.
    View in: PubMed
    Score: 0.084
  124. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006 Jan 01; 66(1):184-91.
    View in: PubMed
    Score: 0.083
  125. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med. 2006; 57:33-47.
    View in: PubMed
    Score: 0.083
  126. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15; 65(24):11712-20.
    View in: PubMed
    Score: 0.083
  127. New treatments for multiple myeloma. Oncology (Williston Park). 2005 Dec; 19(14):1781-92; discussion 1792, 1795-7.
    View in: PubMed
    Score: 0.083
  128. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005 Nov; 8(5):407-19.
    View in: PubMed
    Score: 0.082
  129. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006 Feb 01; 107(3):1092-100.
    View in: PubMed
    Score: 0.082
  130. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005 Sep 15; 65(18):8350-8.
    View in: PubMed
    Score: 0.081
  131. Emerging trends in the clinical use of bortezomib in multiple myeloma. Clin Lymphoma Myeloma. 2005 Sep; 6(2):84-8.
    View in: PubMed
    Score: 0.081
  132. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene. 2005 Sep 01; 24(38):5888-96.
    View in: PubMed
    Score: 0.081
  133. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res. 2005 Aug 15; 65(16):7478-84.
    View in: PubMed
    Score: 0.081
  134. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005 Jul 01; 65(13):5898-906.
    View in: PubMed
    Score: 0.080
  135. Proteasome inhibition as a therapeutic strategy for hematologic malignancies. Expert Rev Anticancer Ther. 2005 Jun; 5(3):465-76.
    View in: PubMed
    Score: 0.080
  136. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood. 2005 Sep 01; 106(5):1794-800.
    View in: PubMed
    Score: 0.079
  137. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood. 2005 Aug 01; 106(3):1042-7.
    View in: PubMed
    Score: 0.079
  138. Proteasome inhibitor therapy in multiple myeloma. . 2005 Apr; 4(4):686-92.
    View in: PubMed
    Score: 0.079
  139. Targeting signalling pathways for the treatment of multiple myeloma. Expert Opin Ther Targets. 2005 Apr; 9(2):359-81.
    View in: PubMed
    Score: 0.079
  140. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood. 2005 Jul 15; 106(2):706-12.
    View in: PubMed
    Score: 0.079
  141. Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood. 2005 Jun 01; 105(11):4470-6.
    View in: PubMed
    Score: 0.078
  142. Proteasome inhibition in the treatment of cancer. . 2005 Feb; 4(2):290-6.
    View in: PubMed
    Score: 0.078
  143. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol. 2005 Jan 20; 23(3):630-9.
    View in: PubMed
    Score: 0.078
  144. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol. 2005; 45:465-76.
    View in: PubMed
    Score: 0.077
  145. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005 Jan; 128(2):192-203.
    View in: PubMed
    Score: 0.077
  146. Novel biological therapies for the treatment of multiple myeloma. Best Pract Res Clin Haematol. 2005; 18(4):619-34.
    View in: PubMed
    Score: 0.077
  147. Proteasome inhibitors as therapeutics. Essays Biochem. 2005; 41:205-18.
    View in: PubMed
    Score: 0.077
  148. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res. 2004 Dec 01; 64(23):8746-53.
    View in: PubMed
    Score: 0.077
  149. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res. 2004 Nov 15; 10(22):7540-6.
    View in: PubMed
    Score: 0.077
  150. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004 Oct 15; 64(20):7500-6.
    View in: PubMed
    Score: 0.076
  151. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004 Dec 15; 104(13):4188-93.
    View in: PubMed
    Score: 0.076
  152. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood. 2004 Dec 01; 104(12):3688-96.
    View in: PubMed
    Score: 0.075
  153. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc. 2004 Jul; 79(7):875-82.
    View in: PubMed
    Score: 0.075
  154. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004 Nov 01; 104(9):2886-92.
    View in: PubMed
    Score: 0.075
  155. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood. 2004 Oct 15; 104(8):2458-66.
    View in: PubMed
    Score: 0.075
  156. An update of novel therapeutic approaches for multiple myeloma. Curr Treat Options Oncol. 2004 Jun; 5(3):227-38.
    View in: PubMed
    Score: 0.074
  157. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004 May; 125(3):343-52.
    View in: PubMed
    Score: 0.074
  158. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene. 2004 Apr 29; 23(20):3597-602.
    View in: PubMed
    Score: 0.074
  159. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004 Apr 15; 64(8):2846-52.
    View in: PubMed
    Score: 0.074
  160. TNFalpha induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochem Biophys Res Commun. 2004 Apr 02; 316(2):528-32.
    View in: PubMed
    Score: 0.074
  161. Critical role for hematopoietic cell kinase (Hck)-mediated phosphorylation of Gab1 and Gab2 docking proteins in interleukin 6-induced proliferation and survival of multiple myeloma cells. J Biol Chem. 2004 May 14; 279(20):21658-65.
    View in: PubMed
    Score: 0.073
  162. Proteasome inhibition in hematologic malignancies. Ann Med. 2004; 36(4):304-14.
    View in: PubMed
    Score: 0.072
  163. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004 Jan 13; 101(2):540-5.
    View in: PubMed
    Score: 0.072
  164. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood. 2004 Apr 15; 103(8):3158-66.
    View in: PubMed
    Score: 0.072
  165. Functional significance of novel neurotrophin-1/B cell-stimulating factor-3 (cardiotrophin-like cytokine) for human myeloma cell growth and survival. Br J Haematol. 2003 Dec; 123(5):869-78.
    View in: PubMed
    Score: 0.072
  166. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004 May 01; 103(9):3474-9.
    View in: PubMed
    Score: 0.072
  167. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 2003 Oct 15; 63(20):6689-96.
    View in: PubMed
    Score: 0.071
  168. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 2003 Oct 01; 63(19):6174-7.
    View in: PubMed
    Score: 0.071
  169. Effects of oligonucleotide N3'-->P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 2003 Oct 01; 63(19):6187-94.
    View in: PubMed
    Score: 0.071
  170. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene. 2003 Sep 18; 22(40):6296-300.
    View in: PubMed
    Score: 0.071
  171. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res. 2003 Sep 15; 63(18):5850-8.
    View in: PubMed
    Score: 0.071
  172. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004 Mar 01; 103(5):1799-806.
    View in: PubMed
    Score: 0.071
  173. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 2003 Sep-Oct; 10(5):361-9.
    View in: PubMed
    Score: 0.071
  174. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003 Dec 15; 102(13):4504-11.
    View in: PubMed
    Score: 0.071
  175. Apoptotic signaling in multiple myeloma: therapeutic implications. Int J Hematol. 2003 Aug; 78(2):114-20.
    View in: PubMed
    Score: 0.070
  176. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood. 2003 Nov 01; 102(9):3379-86.
    View in: PubMed
    Score: 0.070
  177. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003 Jun 26; 348(26):2609-17.
    View in: PubMed
    Score: 0.070
  178. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood. 2003 Oct 01; 102(7):2615-22.
    View in: PubMed
    Score: 0.070
  179. Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol. 2003 May; 121(4):592-6.
    View in: PubMed
    Score: 0.069
  180. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003 Aug 15; 102(4):1435-42.
    View in: PubMed
    Score: 0.069
  181. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2003 May 16; 278(20):17593-6.
    View in: PubMed
    Score: 0.069
  182. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003 May 15; 101(10):4055-62.
    View in: PubMed
    Score: 0.068
  183. Novel therapies for multiple myeloma. Br J Haematol. 2003 Jan; 120(1):10-7.
    View in: PubMed
    Score: 0.067
  184. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 2003 Jan 01; 63(1):18-21.
    View in: PubMed
    Score: 0.067
  185. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood. 2003 May 01; 101(9):3606-14.
    View in: PubMed
    Score: 0.067
  186. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003 Feb 21; 278(8):5794-801.
    View in: PubMed
    Score: 0.067
  187. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood. 2003 Apr 01; 101(7):2762-9.
    View in: PubMed
    Score: 0.067
  188. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003 Mar 15; 101(6):2377-80.
    View in: PubMed
    Score: 0.067
  189. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002 Nov 01; 100(9):3063-7.
    View in: PubMed
    Score: 0.067
  190. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002 Oct 29; 99(22):14374-9.
    View in: PubMed
    Score: 0.067
  191. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood. 2002 Sep 15; 100(6):2187-94.
    View in: PubMed
    Score: 0.066
  192. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 2002 Sep 01; 62(17):4996-5000.
    View in: PubMed
    Score: 0.066
  193. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2002 Sep 01; 62(17):5019-26.
    View in: PubMed
    Score: 0.066
  194. Telomerase inhibitors as anticancer therapy. Curr Med Chem Anticancer Agents. 2002 Sep; 2(5):567-75.
    View in: PubMed
    Score: 0.066
  195. Novel biologically based therapeutic strategies in myeloma. Rev Clin Exp Hematol. 2002 Sep; 6(3):301-24.
    View in: PubMed
    Score: 0.066
  196. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002 Aug 22; 21(37):5673-83.
    View in: PubMed
    Score: 0.066
  197. Novel biologically based therapies for multiple myeloma. Int J Hematol. 2002 Aug; 76 Suppl 1:340-1.
    View in: PubMed
    Score: 0.066
  198. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. . 2002 Aug; 1(10):851-60.
    View in: PubMed
    Score: 0.066
  199. Absence of biologically important Kaposi sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood. 2002 Jul 15; 100(2):698-700.
    View in: PubMed
    Score: 0.065
  200. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 2002 Jul 01; 62(13):3876-82.
    View in: PubMed
    Score: 0.065
  201. beta-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp Hematol. 2002 Jul; 30(7):711-20.
    View in: PubMed
    Score: 0.065
  202. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002 Jun 15; 99(12):4525-30.
    View in: PubMed
    Score: 0.065
  203. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002 Jun 01; 99(11):4079-86.
    View in: PubMed
    Score: 0.065
  204. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene. 2002 Feb 21; 21(9):1346-58.
    View in: PubMed
    Score: 0.064
  205. Thalidomide: emerging role in cancer medicine. Annu Rev Med. 2002; 53:629-57.
    View in: PubMed
    Score: 0.063
  206. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov. 2021 07; 2(4):370-387.
    View in: PubMed
    Score: 0.060
  207. Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia. 2020 01; 34(1):196-209.
    View in: PubMed
    Score: 0.053
  208. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics. 2018 12; 15(12):1033-1052.
    View in: PubMed
    Score: 0.051
  209. A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity. Leukemia. 2019 01; 33(1):171-180.
    View in: PubMed
    Score: 0.050
  210. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017 12; 36(4):561-584.
    View in: PubMed
    Score: 0.047
  211. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol. 2017 12; 179(5):756-771.
    View in: PubMed
    Score: 0.047
  212. MUC1-C is a target in lenalidomide resistant multiple myeloma. Br J Haematol. 2017 09; 178(6):914-926.
    View in: PubMed
    Score: 0.046
  213. MUC1-C drives MYC in multiple myeloma. Blood. 2016 05 26; 127(21):2587-97.
    View in: PubMed
    Score: 0.042
  214. A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res. 2016 Mar 01; 22(5):1222-33.
    View in: PubMed
    Score: 0.041
  215. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015 Sep; 5(9):972-87.
    View in: PubMed
    Score: 0.040
  216. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015 Jun; 21(6):572-80.
    View in: PubMed
    Score: 0.040
  217. Heteroclitic XBP1 peptides evoke tumor-specific memory cytotoxic T lymphocytes against breast cancer, colon cancer, and pancreatic cancer cells. Oncoimmunology. 2014; 3(12):e970914.
    View in: PubMed
    Score: 0.039
  218. Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J Control Release. 2014 Dec 28; 196:113-21.
    View in: PubMed
    Score: 0.038
  219. Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor, AZD8055, in multiple myeloma. . 2014 Nov; 13(11):2489-500.
    View in: PubMed
    Score: 0.038
  220. Novel targeted agents in the treatment of multiple myeloma. Hematol Oncol Clin North Am. 2014 Oct; 28(5):903-25.
    View in: PubMed
    Score: 0.038
  221. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014 Jun; 20(6):599-606.
    View in: PubMed
    Score: 0.037
  222. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014 Aug; 166(3):401-9.
    View in: PubMed
    Score: 0.037
  223. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/ß-catenin/BCL9 pathway. Cancer Res. 2014 Mar 15; 74(6):1801-13.
    View in: PubMed
    Score: 0.037
  224. Phase transitions in human IgG solutions. J Chem Phys. 2013 Sep 28; 139(12):121904.
    View in: PubMed
    Score: 0.036
  225. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity. Br J Haematol. 2013 Jul; 162(2):210-20.
    View in: PubMed
    Score: 0.035
  226. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone. 2013 Apr; 53(2):487-96.
    View in: PubMed
    Score: 0.034
  227. New proteasome inhibitors in myeloma. Curr Hematol Malig Rep. 2012 Dec; 7(4):258-66.
    View in: PubMed
    Score: 0.034
  228. Pathological crystallization of human immunoglobulins. Proc Natl Acad Sci U S A. 2012 Aug 14; 109(33):13359-61.
    View in: PubMed
    Score: 0.033
  229. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012 Mar 15; 119(11):2579-89.
    View in: PubMed
    Score: 0.032
  230. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res. 2011 Oct 15; 17(20):6500-9.
    View in: PubMed
    Score: 0.031
  231. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica. 2011 Aug; 96(8):1170-9.
    View in: PubMed
    Score: 0.030
  232. Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent Aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. Clin Cancer Res. 2011 May 15; 17(10):3259-71.
    View in: PubMed
    Score: 0.030
  233. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 2010 Apr; 9(4):963-75.
    View in: PubMed
    Score: 0.028
  234. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010 May; 149(4):537-49.
    View in: PubMed
    Score: 0.028
  235. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A. 2010 Mar 16; 107(11):5124-9.
    View in: PubMed
    Score: 0.028
  236. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res. 2009 Dec 01; 15(23):7153-60.
    View in: PubMed
    Score: 0.027
  237. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res. 2009 Dec 01; 15(23):7144-52.
    View in: PubMed
    Score: 0.027
  238. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009 Oct; 7(9):947-60.
    View in: PubMed
    Score: 0.027
  239. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol. 2009 Dec; 147(5):672-6.
    View in: PubMed
    Score: 0.027
  240. High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res. 2009 Sep 15; 15(18):5829-39.
    View in: PubMed
    Score: 0.027
  241. Bortezomib in the management of multiple myeloma. Cancer Manag Res. 2009 Sep 08; 1:107-17.
    View in: PubMed
    Score: 0.027
  242. Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009 Sep 24; 114(13):2699-708.
    View in: PubMed
    Score: 0.027
  243. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009 Jun 15; 69(12):5082-90.
    View in: PubMed
    Score: 0.026
  244. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009 Jul 09; 114(2):371-9.
    View in: PubMed
    Score: 0.026
  245. Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol. 2009 Apr; 46(2):166-75.
    View in: PubMed
    Score: 0.026
  246. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009 Apr 30; 113(18):4341-51.
    View in: PubMed
    Score: 0.026
  247. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood. 2009 Feb 12; 113(7):1513-21.
    View in: PubMed
    Score: 0.025
  248. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 2008 Dec 15; 112(13):5095-102.
    View in: PubMed
    Score: 0.025
  249. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood. 2008 May 15; 111(10):5068-77.
    View in: PubMed
    Score: 0.024
  250. Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2008 May 01; 111(9):4752-63.
    View in: PubMed
    Score: 0.024
  251. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008 Feb; 118(2):491-504.
    View in: PubMed
    Score: 0.024
  252. Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res. 2008 Feb 01; 14(3):865-74.
    View in: PubMed
    Score: 0.024
  253. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007 Oct 01; 13(19):5903-9.
    View in: PubMed
    Score: 0.023
  254. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007 Dec 15; 110(13):4417-26.
    View in: PubMed
    Score: 0.023
  255. Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res. 2007 Jul 01; 13(13):3771-5.
    View in: PubMed
    Score: 0.023
  256. Novel therapeutic avenues in myeloma: changing the treatment paradigm. Oncology (Williston Park). 2007 Jun; 21(7):785-92; discussion 798-800.
    View in: PubMed
    Score: 0.023
  257. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007 Apr 01; 109(7):2708-17.
    View in: PubMed
    Score: 0.023
  258. Emerging drugs in multiple myeloma. Expert Opin Emerg Drugs. 2007 Mar; 12(1):155-63.
    View in: PubMed
    Score: 0.023
  259. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood. 2007 Jun 01; 109(11):4964-72.
    View in: PubMed
    Score: 0.022
  260. Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res. 2006 Nov 15; 12(22):6826-35.
    View in: PubMed
    Score: 0.022
  261. Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res. 2005 Sep 01; 65(17):7896-901.
    View in: PubMed
    Score: 0.020
  262. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood. 2005 Nov 01; 106(9):2977-81.
    View in: PubMed
    Score: 0.020
  263. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004 Mar; 5(3):221-30.
    View in: PubMed
    Score: 0.018
  264. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004 Mar 01; 103(5):1787-90.
    View in: PubMed
    Score: 0.018
  265. Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. . 2003 Sep; 2(9):825-33.
    View in: PubMed
    Score: 0.018
  266. Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol. 2003 Apr; 31(4):271-82.
    View in: PubMed
    Score: 0.017
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.