Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Ralph Weissleder, Ph.D., M.D.

Co-Author

This page shows the publications co-authored by Ralph Weissleder and Claudio Vinegoni.
Connection Strength

15.976
  1. Fluorescence microscopy tensor imaging representations for large-scale dataset analysis. Sci Rep. 2020 03 27; 10(1):5632.
    View in: PubMed
    Score: 0.903
  2. High dynamic range fluorescence imaging. IEEE J Sel Top Quantum Electron. 2019 Jan-Feb; 25(1).
    View in: PubMed
    Score: 0.823
  3. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev. 2019 Nov - Dec; 151-152:262-288.
    View in: PubMed
    Score: 0.779
  4. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc. 2017 Jul; 12(7):1472-1497.
    View in: PubMed
    Score: 0.747
  5. Real-time high dynamic range laser scanning microscopy. Nat Commun. 2016 Apr 01; 7:11077.
    View in: PubMed
    Score: 0.685
  6. Two-photon Fluorescence Anisotropy Microscopy for Imaging and Direct Measurement of Intracellular Drug Target Engagement. IEEE J Sel Top Quantum Electron. 2016 May-Jun; 22(3).
    View in: PubMed
    Score: 0.682
  7. Imaging the beating heart in the mouse using intravital microscopy techniques. Nat Protoc. 2015 Nov; 10(11):1802-19.
    View in: PubMed
    Score: 0.665
  8. Advances in measuring single-cell pharmacology in vivo. Drug Discov Today. 2015 Sep; 20(9):1087-92.
    View in: PubMed
    Score: 0.646
  9. New techniques for motion-artifact-free in vivo cardiac microscopy. Front Physiol. 2015; 6:147.
    View in: PubMed
    Score: 0.644
  10. Advanced Motion Compensation Methods for Intravital Optical Microscopy. IEEE J Sel Top Quantum Electron. 2014 Mar; 20(2).
    View in: PubMed
    Score: 0.593
  11. Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging. Biomed Opt Express. 2013; 4(10):2095-106.
    View in: PubMed
    Score: 0.574
  12. Motion compensation using a suctioning stabilizer for intravital microscopy. Intravital. 2012 Oct 01; 1(2):115-121.
    View in: PubMed
    Score: 0.538
  13. Mapping molecular agents distributions in whole mice hearts using born-normalized optical projection tomography. PLoS One. 2012; 7(4):e34427.
    View in: PubMed
    Score: 0.520
  14. Imaging of molecular probe activity with Born-normalized fluorescence optical projection tomography. Opt Lett. 2010 Apr 01; 35(7):1088-90.
    View in: PubMed
    Score: 0.452
  15. High throughput transmission optical projection tomography using low cost graphics processing unit. Opt Express. 2009 Dec 07; 17(25):22320-32.
    View in: PubMed
    Score: 0.442
  16. Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles. Opt Lett. 2009 Sep 01; 34(17):2566-8.
    View in: PubMed
    Score: 0.434
  17. Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila. J Vis Exp. 2009 Aug 20; (30).
    View in: PubMed
    Score: 0.433
  18. Born normalization for fluorescence optical projection tomography for whole heart imaging. J Vis Exp. 2009 Jun 02; (28).
    View in: PubMed
    Score: 0.427
  19. Normalized Born ratio for fluorescence optical projection tomography. Opt Lett. 2009 Feb 01; 34(3):319-21.
    View in: PubMed
    Score: 0.417
  20. CytoPAN-Portable cellular analyses for rapid point-of-care cancer diagnosis. Sci Transl Med. 2020 08 05; 12(555).
    View in: PubMed
    Score: 0.232
  21. Extended dynamic range imaging for noise mitigation in fluorescence anisotropy imaging. J Biomed Opt. 2020 08; 25(8).
    View in: PubMed
    Score: 0.231
  22. Characterization of single microvesicles in plasma from glioblastoma patients. Neuro Oncol. 2019 05 06; 21(5):606-615.
    View in: PubMed
    Score: 0.212
  23. Design and Development of Fluorescent Vemurafenib Analogs for In Vivo Imaging. Theranostics. 2017; 7(5):1257-1265.
    View in: PubMed
    Score: 0.183
  24. Motion characterization scheme to minimize motion artifacts in intravital microscopy. J Biomed Opt. 2017 03 01; 22(3):36005.
    View in: PubMed
    Score: 0.183
  25. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol. 2017 02; 13(2):168-173.
    View in: PubMed
    Score: 0.180
  26. Computational imaging reveals mitochondrial morphology as a biomarker of cancer phenotype and drug response. Sci Rep. 2016 09 09; 6:32985.
    View in: PubMed
    Score: 0.177
  27. Rapid, high efficiency isolation of pancreatic ß-cells. Sci Rep. 2015 Sep 02; 5:13681.
    View in: PubMed
    Score: 0.165
  28. Steady state anisotropy two-photon microscopy resolves multiple, spectrally similar fluorophores, enabling in vivo multilabel imaging. Opt Lett. 2014 Aug 01; 39(15):4482-5.
    View in: PubMed
    Score: 0.153
  29. Intravital imaging of cardiac function at the single-cell level. Proc Natl Acad Sci U S A. 2014 Aug 05; 111(31):11257-62.
    View in: PubMed
    Score: 0.152
  30. In vivo imaging of specific drug-target binding at subcellular resolution. Nat Commun. 2014 May 28; 5:3946.
    View in: PubMed
    Score: 0.151
  31. Automated motion artifact removal for intravital microscopy, without a priori information. Sci Rep. 2014 Mar 28; 4:4507.
    View in: PubMed
    Score: 0.149
  32. Improved intravital microscopy via synchronization of respiration and holder stabilization. J Biomed Opt. 2012 Sep; 17(9):96018-1.
    View in: PubMed
    Score: 0.134
  33. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators. Bioconjug Chem. 2012 Sep 19; 23(9):1945-51.
    View in: PubMed
    Score: 0.134
  34. Noise suppressed, multifocus image fusion for enhanced intraoperative navigation. J Biophotonics. 2013 Apr; 6(4):363-70.
    View in: PubMed
    Score: 0.133
  35. Bioorthogonal imaging of aurora kinase A in live cells. Angew Chem Int Ed Engl. 2012 Jul 02; 51(27):6598-603.
    View in: PubMed
    Score: 0.131
  36. In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res. 2012 Jun 15; 72(12):2949-56.
    View in: PubMed
    Score: 0.130
  37. Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. Neoplasia. 2012 Mar; 14(3):169-77.
    View in: PubMed
    Score: 0.129
  38. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat Commun. 2012; 3:1054.
    View in: PubMed
    Score: 0.128
  39. Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A. 2011 Aug 02; 108(31):12815-20.
    View in: PubMed
    Score: 0.124
  40. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011 May 25; 3(84):84ra45.
    View in: PubMed
    Score: 0.122
  41. Intraoperative near-infrared fluorescent cholangiography (NIRFC) in mouse models of bile duct injury: reply. World J Surg. 2011 Mar; 35(3):694-5.
    View in: PubMed
    Score: 0.120
  42. Block matching 3D random noise filtering for absorption optical projection tomography. Phys Med Biol. 2010 Sep 21; 55(18):5401-15.
    View in: PubMed
    Score: 0.116
  43. Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci U S A. 2010 Apr 27; 107(17):7910-5.
    View in: PubMed
    Score: 0.113
  44. Diffractionless beam in free space with adiabatic changing refractive index in a single mode tapered slab waveguide. Opt Express. 2009 Nov 23; 17(24):21723-31.
    View in: PubMed
    Score: 0.110
  45. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008 Oct 28; 118(18):1802-9.
    View in: PubMed
    Score: 0.102
  46. Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature. 2021 Jul; 595(7869):701-706.
    View in: PubMed
    Score: 0.062
  47. Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. J Am Coll Cardiol. 2020 03 03; 75(8):901-915.
    View in: PubMed
    Score: 0.056
  48. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018 09; 21(9):1209-1217.
    View in: PubMed
    Score: 0.051
  49. Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circ Res. 2018 08 03; 123(4):415-427.
    View in: PubMed
    Score: 0.050
  50. Cardiac macrophages promote diastolic dysfunction. J Exp Med. 2018 02 05; 215(2):423-440.
    View in: PubMed
    Score: 0.049
  51. Macrophages Facilitate Electrical Conduction in the Heart. Cell. 2017 04 20; 169(3):510-522.e20.
    View in: PubMed
    Score: 0.046
  52. Transparent Electrophysiology Microelectrodes and Interconnects from Metal Nanomesh. ACS Nano. 2017 04 25; 11(4):4365-4372.
    View in: PubMed
    Score: 0.046
  53. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 2016 06 08; 8(342):342ra80.
    View in: PubMed
    Score: 0.043
  54. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016 Feb 12; 7:10666.
    View in: PubMed
    Score: 0.042
  55. Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells. Cell Stem Cell. 2015 May 07; 16(5):477-87.
    View in: PubMed
    Score: 0.040
  56. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014 Jul; 20(7):754-758.
    View in: PubMed
    Score: 0.038
  57. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc Natl Acad Sci U S A. 2012 Nov 27; 109(48):19638-43.
    View in: PubMed
    Score: 0.034
  58. Myocardial infarction accelerates atherosclerosis. Nature. 2012 Jul 19; 487(7407):325-9.
    View in: PubMed
    Score: 0.033
  59. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012 Jan 10; 59(2):153-63.
    View in: PubMed
    Score: 0.032
  60. WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr Biol. 2010 Nov 23; 20(22):1993-2002.
    View in: PubMed
    Score: 0.029
  61. Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. J Clin Invest. 2008 Dec; 118(12):4058-66.
    View in: PubMed
    Score: 0.026
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.