Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Gary Yellen, Ph.D.

Profile Picture

Research in my lab is focused in two areas. For a long time we have worked on understanding the "moving parts" of ion channels, which are the membrane proteins that control electrical excitability in neurons. Beyond their basic interest, these studies have implications for the interaction of therapeutic drugs with ion channels. More recently, we are studying the relationship between neuronal metabolism and excitability, with the goal of improving epilepsy treatment.

These projects are inspired by a remarkably effective but poorly understood therapy for epilepsy: the ketogenic diet. We have discovered that certain fuel molecules that appear in the blood of people on the ketogenic diet – ketone bodies – can produce opening of metabolically sensitive KATP channels in various central neurons. Opening of these potassium channels slows action potential firing and may contribute to the anticonvulsant mechanism. Our main hypothesis is that ketone bodies, or other metabolic manipulations, lead to a shift from glycolytic metabolism to other mechanisms of ATP production, and that this shift away from glycolytic ATP production is particularly effective in allowing KATP channels (which are inhibited by ATP) to open.

We aim to learn
* When are neuronal KATP channels active, and how do they influence firing and seizures?
* Is ATP locally compartmented in neurons?
* Does glycolysis govern ATP:ADP in the submembrane space sensed by KATP channels?
* How does neuronal metabolism vary with fuel source?
* What signals shift the balance between glycolysis and other metabolic pathways?
* How does astrocyte metabolism influence neuronal metabolism?

We use electrophysiological and pharmacologic tools, as well as knockout mice. We also are developing a series of new fluorescent biosensors for visualizing metabolite levels in cells -- we already have a sensor for ATP:ADP ratio, and are working on sensors for NADH and NADPH.

In the long run, we would like to understand what it is about the ketogenic diet that prevents epileptic seizures. Because diets (and especially this diet) are notoriously difficult for people to follow, we hope that understanding the physiological basis of such therapy allows us either to fine-tune the dietary manipulation or to find medications that target the same very effective anticonvulsant mechanisms tapped into by the ketogenic diet.

We use single channel biophysics and directed mutagenesis to relate ion channel function to structure. Often we introduce individual cysteine residues into the channel protein; these cysteines serve as targets for chemical modification and for metal binding. For instance, when introduced at just the right place in the moving parts of the channel protein, a pair of cysteines can be bridged by a metal ion (such as Cd2+). If the metal bridges are compatible with only some of the functional conformations of the channel, they influence gating: for instance, they can lock the channel in an open state or in a closed state.

We have applied this approach, together with looking at the state-dependent rate of chemical modification of cysteines, to learn about the moving parts of both voltage-gated K+ channels and voltage-gated pacemaker (HCN) channels. Our current focus is to learn about coupling between the sensors and gates of these channels: how the nucleotide binding domain and the pore-forming domain interact during gating of HCN channels, and why the HCN channels have a "backward" voltage-dependence.

Electrophysiology in brain slice and neuronal culture
* Single channel recording
* Perforated patch and whole cell recording

Developing new fluorescent reporters for metabolites (ATP, NADH, NADPH)
* Engineered fusion proteins
* Directed evolution of sensors

* Widefield and confocal fluorescent microscopy of live cells expressing metabolic sensors

Heterologous expression of mutant channels
* Site-directed mutagenesis of channel proteins
* State-dependent chemical modification in excised patches
* State-dependent metal bridging

The research activities and funding listed below are automatically derived from NIH ExPORTER and other sources, which might result in incorrect or missing items. Faculty can login to make corrections and additions.
  1. R01NS102586 (YELLEN, GARY I) Mar 1, 2018 - Nov 30, 2022
    Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
    Role: Principal Investigator
  2. R01GM124038 (YELLEN, GARY I) Aug 1, 2017 - Jul 31, 2021
    High-throughput optimization of genetically-encoded fluorescent biosensors
    Role: Principal Investigator
  3. R01NS083844 (DANIAL, NIKA N) Jul 15, 2013 - Jun 30, 2018
    Metabolic control of neuronal activity by fuel substrate switching
    Role: Co-Principal Investigator
  4. DP1EB016985 (YELLEN, GARY I) Sep 30, 2012 - Jul 31, 2018
    Single cell analysis of metabolism using genetically-encoded fluorescent sensors
    Role: Principal Investigator
  5. R56NS072142 (DANIAL, NIKA N.) Sep 30, 2011 - Jun 30, 2013
    Reprogramming Neural Energy Metabolism for Control of Excitability and Seizures
    Role: Co-Principal Investigator

Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
  1. Cervenka M, Pascual JM, Rho JM, Thiele E, Yellen G, Whittemore V, Hartman AL. Metabolism-based therapies for epilepsy: new directions for future cures. Ann Clin Transl Neurol. 2021 08; 8(8):1730-1737. PMID: 34247456.
    Citations:    Fields:    
  2. Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. Elife. 2021 Feb 08; 10. PMID: 33555254.
    Citations:    Fields:    
  3. Koveal D, Díaz-García CM, Yellen G. Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation. Curr Opin Neurobiol. 2020 08; 63:111-121. PMID: 32559637.
    Citations: 3     Fields:    Translation:Cells
  4. Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature. 2020 07; 583(7814):122-126. PMID: 32461692.
    Citations: 16     Fields:    Translation:HumansAnimalsCells
  5. Díaz-García CM, Lahmann C, Martínez-François JR, Li B, Koveal D, Nathwani N, Rahman M, Keller JP, Marvin JS, Looger LL, Yellen G. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J Neurosci Res. 2019 08; 97(8):946-960. PMID: 31106909.
    Citations: 11     Fields:    Translation:HumansAnimalsCells
  6. Díaz-García CM, Yellen G. Neurons rely on glucose rather than astrocytic lactate during stimulation. J Neurosci Res. 2019 08; 97(8):883-889. PMID: 30575090.
    Citations: 16     Fields:    Translation:HumansAnimalsCells
  7. Yellen G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol. 2018 07 02; 217(7):2235-2246. PMID: 29752396.
    Citations: 69     Fields:    Translation:HumansAnimalsCells
  8. Martínez-François JR, Fernández-Agüera MC, Nathwani N, Lahmann C, Burnham VL, Danial NN, Yellen G. BAD and KATP channels regulate neuron excitability and epileptiform activity. Elife. 2018 01 25; 7. PMID: 29368690.
    Citations: 8     Fields:    Translation:AnimalsCells
  9. Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, Minguet M, Distor K, Rocha-Gregg BL, Coloff JL, Keibler MA, Stephanopoulos G, Yellen G, Brugge JS, Albeck JG. Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. Elife. 2017 12 14; 6. PMID: 29239720.
    Citations: 16     Fields:    Translation:HumansCells
  10. Foley J, Burnham V, Tedoldi M, Danial NN, Yellen G. BAD knockout provides metabolic seizure resistance in a genetic model of epilepsy with sudden unexplained death in epilepsy. Epilepsia. 2018 01; 59(1):e1-e4. PMID: 29171006.
    Citations: 7     Fields:    Translation:Animals
  11. Masia R, McCarty WJ, Lahmann C, Luther J, Chung RT, Yarmush ML, Yellen G. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices. Am J Physiol Gastrointest Liver Physiol. 2018 01 01; 314(1):G97-G108. PMID: 29025729.
    Citations: 4     Fields:    Translation:HumansAnimalsCells
  12. Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake. Cell Metab. 2017 Aug 01; 26(2):361-374.e4. PMID: 28768175.
    Citations: 102     Fields:    Translation:AnimalsCells
  13. Lutas A, Lahmann C, Soumillon M, Yellen G. The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. Elife. 2016 05 13; 5. PMID: 27177420.
    Citations: 17     Fields:    Translation:AnimalsCells
  14. Mongeon R, Venkatachalam V, Yellen G. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging. Antioxid Redox Signal. 2016 10 01; 25(10):553-63. PMID: 26857245.
    Citations: 25     Fields:    Translation:AnimalsCells
  15. Chen Y, Saulnier JL, Yellen G, Sabatini BL. Corrigendum: A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol. 2016; 7:46. PMID: 26941646.
  16. Schoeler NE, Leu C, White J, Plagnol V, Ellard S, Matarin M, Yellen G, Thiele EA, Mackay M, McMahon JM, Scheffer IE, Sander JW, Cross JH, Sisodiya SM. Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy. Epilepsy Res. 2015 Dec; 118:22-8. PMID: 26590798.
    Citations: 3     Fields:    Translation:Humans
  17. Yellen G, Mongeon R. Quantitative two-photon imaging of fluorescent biosensors. Curr Opin Chem Biol. 2015 Aug; 27:24-30. PMID: 26079046.
    Citations: 26     Fields:    Translation:HumansAnimalsCells
  18. Lutas A, Birnbaumer L, Yellen G. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels. J Neurosci. 2014 Dec 03; 34(49):16336-47. PMID: 25471572.
    Citations: 24     Fields:    Translation:AnimalsCells
  19. Masia R, Krause DS, Yellen G. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver. . 2015 Feb 01; 308(3):C264-76. PMID: 25472961.
    Citations: 9     Translation:AnimalsCells
  20. Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, Locasale JW. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife. 2014 Jul 09; 3. PMID: 25009227.
    Citations: 74     Fields:    Translation:HumansCells
  21. Chen Y, Saulnier JL, Yellen G, Sabatini BL. A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol. 2014; 5:56. PMID: 24765076.
    Citations: 33     
  22. Hung YP, Yellen G. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor. Methods Mol Biol. 2014; 1071:83-95. PMID: 24052382.
    Citations: 17     Fields:    Translation:AnimalsCells
  23. Tantama M, Yellen G. Imaging changes in the cytosolic ATP-to-ADP ratio. Methods Enzymol. 2014; 547:355-71. PMID: 25416365.
    Citations: 11     Fields:    Translation:HumansAnimalsCells
  24. Tantama M, Martínez-François JR, Mongeon R, Yellen G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat Commun. 2013; 4:2550. PMID: 24096541.
    Citations: 117     Fields:    Translation:HumansAnimalsCells
  25. Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013 Jan; 36(1):32-40. PMID: 23228828.
    Citations: 85     Fields:    Translation:HumansAnimals
  26. Ryu S, Yellen G. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate. J Gen Physiol. 2012 Nov; 140(5):469-79. PMID: 23071265.
    Citations: 17     Fields:    Translation:AnimalsCells
  27. Kwan DC, Prole DL, Yellen G. Structural changes during HCN channel gating defined by high affinity metal bridges. J Gen Physiol. 2012 Sep; 140(3):279-91. PMID: 22930802.
    Citations: 23     Fields:    Translation:HumansAnimalsCells
  28. Giménez-Cassina A, Martínez-François JR, Fisher JK, Szlyk B, Polak K, Wiwczar J, Tanner GR, Lutas A, Yellen G, Danial NN. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron. 2012 May 24; 74(4):719-30. PMID: 22632729.
    Citations: 64     Fields:    Translation:AnimalsCells
  29. Tantama M, Hung YP, Yellen G. Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. Prog Brain Res. 2012; 196:235-63. PMID: 22341329.
    Citations: 32     Fields:    Translation:AnimalsCells
  30. Hung YP, Albeck JG, Tantama M, Yellen G. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011 Oct 05; 14(4):545-54. PMID: 21982714.
    Citations: 182     Fields:    Translation:AnimalsCells
  31. Tantama M, Hung YP, Yellen G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc. 2011 Jul 06; 133(26):10034-7. PMID: 21631110.
    Citations: 107     Fields:    Translation:AnimalsCells
  32. Tanner GR, Lutas A, Martínez-François JR, Yellen G. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J Neurosci. 2011 Jun 08; 31(23):8689-96. PMID: 21653873.
    Citations: 59     Fields:    Translation:AnimalsCells
  33. Berg J, Hung YP, Yellen G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods. 2009 Feb; 6(2):161-6. PMID: 19122669.
    Citations: 175     Fields:    Translation:Cells
  34. Yellen G. Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia. 2008 Nov; 49 Suppl 8:80-2. PMID: 19049596.
    Citations: 26     Fields:    Translation:HumansAnimalsCells
  35. Ma W, Berg J, Yellen G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci. 2007 Apr 04; 27(14):3618-25. PMID: 17409226.
    Citations: 100     Fields:    Translation:AnimalsCells
  36. Dekker JP, Yellen G. Cooperative gating between single HCN pacemaker channels. J Gen Physiol. 2006 Nov; 128(5):561-7. PMID: 17043149.
    Citations: 29     Fields:    Translation:HumansCells
  37. Prole DL, Yellen G. Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6. J Gen Physiol. 2006 Sep; 128(3):273-82. PMID: 16908727.
    Citations: 39     Fields:    Translation:HumansAnimalsCells
  38. Proenza C, Yellen G. Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents. J Gen Physiol. 2006 Feb; 127(2):183-90. PMID: 16446506.
    Citations: 34     Fields:    Translation:HumansCells
  39. del Camino D, Kanevsky M, Yellen G. Status of the intracellular gate in the activated-not-open state of shaker K+ channels. J Gen Physiol. 2005 Nov; 126(5):419-28. PMID: 16260836.
    Citations: 38     Fields:    Translation:AnimalsCells
  40. Webster SM, Del Camino D, Dekker JP, Yellen G. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature. 2004 Apr 22; 428(6985):864-8. PMID: 15103379.
    Citations: 101     Fields:    Translation:HumansCells
  41. Shin KS, Maertens C, Proenza C, Rothberg BS, Yellen G. Inactivation in HCN channels results from reclosure of the activation gate: desensitization to voltage. Neuron. 2004 Mar 04; 41(5):737-44. PMID: 15003173.
    Citations: 62     Fields:    Translation:HumansCells
  42. Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics. 2004 Jul 10; 20(10):1565-72. PMID: 14962924.
    Citations: 55     Fields:    
  43. Rothberg BS, Shin KS, Yellen G. Movements near the gate of a hyperpolarization-activated cation channel. J Gen Physiol. 2003 Nov; 122(5):501-10. PMID: 14557404.
    Citations: 27     Fields:    Translation:HumansCells
  44. Yellen G. The voltage-gated potassium channels and their relatives. Nature. 2002 Sep 05; 419(6902):35-42. PMID: 12214225.
    Citations: 200     Fields:    Translation:AnimalsCells
  45. Smith PL, Yellen G. Fast and slow voltage sensor movements in HERG potassium channels. J Gen Physiol. 2002 Mar; 119(3):275-93. PMID: 11865022.
    Citations: 51     Fields:    Translation:AnimalsCells
  46. Rothberg BS, Shin KS, Phale PS, Yellen G. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J Gen Physiol. 2002 Jan; 119(1):83-91. PMID: 11773240.
    Citations: 50     Fields:    Translation:HumansAnimalsCells
  47. Yellen G. Keeping K+ completely comfortable. Nat Struct Biol. 2001 Dec; 8(12):1011-3. PMID: 11723466.
    Citations: 6     Fields:    Translation:Cells
  48. del Camino D, Yellen G. Tight steric closure at the intracellular activation gate of a voltage-gated K(+) channel. Neuron. 2001 Nov 20; 32(4):649-56. PMID: 11719205.
    Citations: 134     Fields:    Translation:HumansCells
  49. Yellen G. Dimers among friends: ion channel regulation by dimerization of tail domains. Trends Pharmacol Sci. 2001 Sep; 22(9):439-41. PMID: 11543856.
    Citations: 1     Fields:    Translation:Cells
  50. Shin KS, Rothberg BS, Yellen G. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J Gen Physiol. 2001 Feb; 117(2):91-101. PMID: 11158163.
    Citations: 77     Fields:    Translation:HumansCells
  51. Yellen, Gary I. . Pharmacological modulators of voltage-gated potassium ion channels. 2001.
  52. del Camino D, Holmgren M, Liu Y, Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 2000 Jan 20; 403(6767):321-5. PMID: 10659852.
    Citations: 127     Fields:    Translation:Cells
  53. Yellen G. The bacterial K+ channel structure and its implications for neuronal channels. Curr Opin Neurobiol. 1999 Jun; 9(3):267-73. PMID: 10395571.
    Citations: 7     Fields:    Translation:Cells
  54. Holmgren M, Shin KS, Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998 Sep; 21(3):617-21. PMID: 9768847.
    Citations: 99     Fields:    Translation:HumansCells
  55. Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys. 1998 Aug; 31(3):239-95. PMID: 10384687.
    Citations: 199     Fields:    Translation:AnimalsCells
  56. Yellen G. Premonitions of ion channel gating. Nat Struct Biol. 1998 Jun; 5(6):421. PMID: 9628476.
    Citations: 3     Fields:    Translation:Cells
  57. Yellen G. Single channel seeks permeant ion for brief but intimate relationship. J Gen Physiol. 1997 Aug; 110(2):83-5. PMID: 9236202.
    Citations: 14     Fields:    Translation:HumansAnimals
  58. Liu Y, Holmgren M, Jurman ME, Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 1997 Jul; 19(1):175-84. PMID: 9247273.
    Citations: 242     Fields:    Translation:AnimalsCells
  59. Holmgren M, Smith PL, Yellen G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J Gen Physiol. 1997 May; 109(5):527-35. PMID: 9154902.
    Citations: 112     Fields:    Translation:HumansAnimalsCells
  60. Baker K, Warren KS, Yellen G, Fishman MC. Defective "pacemaker" current (Ih) in a zebrafish mutant with a slow heart rate. Proc Natl Acad Sci U S A. 1997 Apr 29; 94(9):4554-9. PMID: 9114028.
    Citations: 51     Fields:    Translation:AnimalsCells
  61. Baukrowitz T, Yellen G. Two functionally distinct subsites for the binding of internal blockers to the pore of voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1996 Nov 12; 93(23):13357-61. PMID: 8917595.
    Citations: 23     Fields:    Translation:HumansCells
  62. Holmgren M, Jurman ME, Yellen G. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol. 1996 Sep; 108(3):195-206. PMID: 8882863.
    Citations: 50     Fields:    Translation:HumansAnimalsCells
  63. Forman SA, Yellen G, Thiele EA. Alternative mechanism for pathogenesis of an inherited epilepsy by a nicotinic AChR mutation. Nat Genet. 1996 Aug; 13(4):396-7. PMID: 8696332.
    Citations: 1     Fields:    Translation:Animals
  64. Liu Y, Jurman ME, Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr; 16(4):859-67. PMID: 8608004.
    Citations: 224     Fields:    Translation:HumansCells
  65. Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996 Feb 29; 379(6568):833-6. PMID: 8587608.
    Citations: 249     Fields:    Translation:HumansAnimalsCells
  66. Baukrowitz T, Yellen G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science. 1996 Feb 02; 271(5249):653-6. PMID: 8571129.
    Citations: 129     Fields:    Translation:HumansCells
  67. Holmgren M, Liu Y, Xu Y, Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996; 35(7):797-804. PMID: 8938712.
    Citations: 68     Fields:    Translation:AnimalsCells
  68. Baukrowitz T, Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995 Oct; 15(4):951-60. PMID: 7576643.
    Citations: 189     Fields:    Translation:HumansCells
  69. Forman SA, Miller KW, Yellen G. A discrete site for general anesthetics on a postsynaptic receptor. Mol Pharmacol. 1995 Oct; 48(4):574-81. PMID: 7476881.
    Citations: 37     Fields:    Translation:AnimalsCells
  70. McLaughlin JT, Hawrot E, Yellen G. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation. Biochem J. 1995 Sep 15; 310 ( Pt 3):765-9. PMID: 7575408.
    Citations: 6     Fields:    Translation:AnimalsCells
  71. Jurman ME, Boland LM, Liu Y, Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov; 17(5):876-81. PMID: 7840967.
    Citations: 128     Fields:    Translation:HumansCells
  72. Yellen G, Sodickson D, Chen TY, Jurman ME. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr; 66(4):1068-75. PMID: 8038379.
    Citations: 148     Fields:    Translation:HumansAnimalsCells
  73. Boland LM, Jurman ME, Yellen G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys J. 1994 Mar; 66(3 Pt 1):694-9. PMID: 8011900.
    Citations: 16     Fields:    Translation:HumansAnimalsCells
  74. Kienker P, Tomaselli G, Jurman M, Yellen G. Conductance mutations of the nicotinic acetylcholine receptor do not act by a simple electrostatic mechanism. Biophys J. 1994 Feb; 66(2 Pt 1):325-34. PMID: 8161686.
    Citations: 19     Fields:    Translation:AnimalsCells
  75. Yellen G. Calcium channels. Structure and selectivity. Nature. 1993 Nov 11; 366(6451):109-10. PMID: 7901764.
    Citations: 6     Fields:    Translation:Cells
  76. Choi KL, Mossman C, Aubé J, Yellen G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron. 1993 Mar; 10(3):533-41. PMID: 8461140.
    Citations: 112     Fields:    Translation:AnimalsCells
  77. Hwang PM, Glatt CE, Bredt DS, Yellen G, Snyder SH. A novel K+ channel with unique localizations in mammalian brain: molecular cloning and characterization. Neuron. 1992 Mar; 8(3):473-81. PMID: 1550672.
    Citations: 30     Fields:    Translation:AnimalsCells
  78. Demo SD, Yellen G. Ion effects on gating of the Ca(2+)-activated K+ channel correlate with occupancy of the pore. Biophys J. 1992 Mar; 61(3):639-48. PMID: 1504240.
    Citations: 59     Fields:    Translation:AnimalsCells
  79. Demo SD, Yellen G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 1991 Nov; 7(5):743-53. PMID: 1742023.
    Citations: 135     Fields:    Translation:AnimalsCells
  80. Tomaselli GF, McLaughlin JT, Jurman ME, Hawrot E, Yellen G. Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys J. 1991 Sep; 60(3):721-7. PMID: 1718469.
    Citations: 42     Fields:    Translation:HumansAnimalsCells
  81. Choi KL, Aldrich RW, Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1991 Jun 15; 88(12):5092-5. PMID: 2052588.
    Citations: 212     Fields:    Translation:HumansCells
  82. Yellen G, Jurman ME, Abramson T, MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 1991 Feb 22; 251(4996):939-42. PMID: 2000494.
    Citations: 168     Fields:    Translation:AnimalsCells
  83. MacKinnon R, Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 1990 Oct 12; 250(4978):276-9. PMID: 2218530.
    Citations: 156     Fields:    Translation:AnimalsCells
  84. Tomaselli GF, Feldman AM, Yellen G, Marban E. Human cardiac sodium channels expressed in Xenopus oocytes. Am J Physiol. 1990 Mar; 258(3 Pt 2):H903-6. PMID: 1690519.
    Citations: 5     Fields:    Translation:HumansAnimalsCells
  85. Yellen G, Migeon JC. Expression of Torpedo nicotinic acetylcholine receptor subunits in yeast is enhanced by use of yeast signal sequences. Gene. 1990 Feb 14; 86(2):145-52. PMID: 2182389.
    Citations:    Fields:    Translation:AnimalsCells
  86. Tomaselli GF, Marban E, Yellen G. Sodium channels from human brain RNA expressed in Xenopus oocytes. Basic electrophysiologic characteristics and their modification by diphenylhydantoin. J Clin Invest. 1989 May; 83(5):1724-32. PMID: 2468690.
    Citations: 4     Fields:    Translation:HumansAnimalsCells
  87. Yellen G. Permeation in potassium channels: implications for channel structure. Annu Rev Biophys Biophys Chem. 1987; 16:227-46. PMID: 2439096.
    Citations: 34     Fields:    Translation:HumansAnimals
  88. Cukierman S, Yellen G, Miller C. The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block. Biophys J. 1985 Sep; 48(3):477-84. PMID: 2412606.
    Citations: 39     Fields:    Translation:AnimalsCells
  89. Yellen G. Relief of Na+ block of Ca2+-activated K+ channels by external cations. J Gen Physiol. 1984 Aug; 84(2):187-99. PMID: 6092515.
    Citations: 73     Fields:    Translation:Animals
  90. Yellen G. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol. 1984 Aug; 84(2):157-86. PMID: 6092514.
    Citations: 231     Fields:    Translation:AnimalsCells
  91. Yellen, G. Ionic permeation and blockade in calcium-activated potassium channels. 1984.
  92. Aldrich, R.W., and G. Yellen. Analysis of nonstationary channel kinetics. Single Channel Recording, ed. E. Neher and B. Sakmann. 1983.
  93. Reuter H, Stevens CF, Tsien RW, Yellen G. Properties of single calcium channels in cardiac cell culture. Nature. 1982 Jun 10; 297(5866):501-4. PMID: 6283360.
    Citations: 109     Fields:    Translation:AnimalsCells
  94. Yellen G. Single Ca2+-activated nonselective cation channels in neuroblastoma. Nature. 1982 Mar 25; 296(5855):357-9. PMID: 6278324.
    Citations: 160     Fields:    Translation:AnimalsCells
  95. Yellen, G. “Basic-23”, PDP-11 software for electrophysiology data acquisition and analysis (widely used internationally for electrophysiology and patch recording). Included earlier contributions from C.F. Stevens and D. Brown. 1981.
Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: HMS/HSDM faculty should contact contactcatalyst.harvard.edu. For faculty or fellow appointment updates and changes, please ask your appointing department to contact HMS. For fellow personal and demographic information, contact HMS Human Resources at human_resourceshms.harvard.edu. For faculty personal and demographic information, contact HMS Office for Faculty Affairs at facappthms.harvard.edu.
Yellen's Networks
Click the
buttons for more information and interactive visualizations!
Concepts (322)
Co-Authors (23)
Similar People (60)
Same Department 
Physical Neighbors
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.