Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Fred Marshall Winston, Ph.D.


Available: 09/06/17, Expires: 07/02/21

This project will focus on the analysis of conserved eukaryotic transcription factors, using the yeasts S. cerevisiae and S. pombe as model systems. Experiments may include isolation and/or analysis of transcription mutants, using methods ranging from classical genetic analysis to genomic methods such as RNA-seq and ChIP-seq.

The research activities and funding listed below are automatically derived from NIH ExPORTER and other sources, which might result in incorrect or missing items. Faculty can login to make corrections and additions.
  1. R01GM120038 (WINSTON, FRED M.) Sep 1, 2017 - Jul 31, 2021
    Analysis of the Essential Transcription Factors Spt5 and Spn1/Iws1
    Role: Principal Investigator
  2. T32GM096911 (WINSTON, FRED M.) Jul 1, 2011 - Jun 30, 2021
    Genetics and Genomics PhD Training Grant
    Role: Principal Investigator
  3. R13HG005791 (WINSTON, FRED M.) Jun 11, 2010 - May 31, 2011
    Genetics 2010: Model Organisms to Human Biology
    Role: Principal Investigator
  4. P41RR011823 (DAVIS, TRISHA N.) Sep 30, 1996 - Jun 30, 2016
    Comprehensive Biology: Exploiting the Yeast Genome
    Role: Co-Principal Investigator
  5. R01GM045720 (WINSTON, FRED M.) May 1, 1991 - Dec 31, 2012
    Analysis of General Transcription Factors in Yeast
    Role: Principal Investigator

Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
List All   |   Timeline
  1. Doris SM, Chuang J, Viktorovskaya O, Murawska M, Spatt D, Churchman LS, Winston F. Spt6 Is Required for the Fidelity of Promoter Selection. Mol Cell. 2018 Nov 15; 72(4):687-699.e6. PMID: 30318445.
    View in: PubMed
  2. Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Mol Cell. 2017 Apr 06; 66(1):77-88.e5. PMID: 28366642.
    View in: PubMed
  3. Winston F, Koshland D. Back to the Future: Mutant Hunts Are Still the Way To Go. Genetics. 2016 07; 203(3):1007-10. PMID: 27384023; PMCID: PMC4937489 [Available on 07/01/17].
  4. Reavey CT, Hickman MJ, Dobi KC, Botstein D, Winston F. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae. Genetics. 2015 Oct; 201(2):599-612. PMID: 26281848; PMCID: PMC4596672 [Available on 10/01/16].
  5. DeGennaro CM, Alver BH, Marguerat S, Stepanova E, Davis CP, Bähler J, Park PJ, Winston F. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013 Dec; 33(24):4779-92. PMID: 24100010.
    View in: PubMed
  6. Neumüller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, Hu Y, Sharifpoor S, Rosebrock AP, Andrews B, Winston F, Perrimon N. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal. 2013 Aug 20; 6(289):ra70. PMID: 23962978; PMCID: PMC3964804.
  7. Chang JS, Winston F. Cell-cycle perturbations suppress the slow-growth defect of spt10? mutants in Saccharomyces cerevisiae. G3 (Bethesda). 2013 Mar; 3(3):573-83. PMID: 23450643; PMCID: PMC3583463.
  8. Ahn S, Spatt D, Winston F. The Schizosaccharomyces pombe inv1+ regulatory region is unusually large and contains redundant cis-acting elements that function in a SAGA- and Swi/Snf-dependent fashion. Eukaryot Cell. 2012 Aug; 11(8):1067-74. PMID: 22707486; PMCID: PMC3416058.
  9. Rando OJ, Winston F. Chromatin and transcription in yeast. Genetics. 2012 Feb; 190(2):351-87. PMID: 22345607; PMCID: PMC3276623.
  10. Kiely CM, Marguerat S, Garcia JF, Madhani HD, Bähler J, Winston F. Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 2011 Oct; 31(20):4193-204. PMID: 21844224; PMCID: PMC3187285.
  11. Kloimwieder A, Winston F. A Screen for Germination Mutants in Saccharomyces cerevisiae. G3 (Bethesda). 2011 Jul; 1(2):143-9. PMID: 22384326; PMCID: PMC3276131.
  12. Helmlinger D, Marguerat S, Villén J, Swaney DL, Gygi SP, Bähler J, Winston F. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J. 2011 Jun 03; 30(14):2843-52. PMID: 21642955; PMCID: PMC3160243.
  13. Hickman MJ, Spatt D, Winston F. The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics. 2011 Jun; 188(2):325-38. PMID: 21467572; PMCID: PMC3122313.
  14. Ivanovska I, Jacques PÉ, Rando OJ, Robert F, Winston F. Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol Cell Biol. 2011 Feb; 31(3):531-41. PMID: 21098123; PMCID: PMC3028613.
  15. Chang JS, Winston F. Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae. Eukaryot Cell. 2011 Jan; 10(1):118-29. PMID: 21057056; PMCID: PMC3019801.
  16. Diebold ML, Koch M, Loeliger E, Cura V, Winston F, Cavarelli J, Romier C. The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO J. 2010 Dec 01; 29(23):3979-91. PMID: 21057455.
    View in: PubMed
  17. Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. J Biol Chem. 2010 Dec 03; 285(49):38389-98. PMID: 20926373; PMCID: PMC2992272.
  18. Libuda DE, Winston F. Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics. 2010 Apr; 184(4):985-97. PMID: 20139344; PMCID: PMC2865932.
  19. Johnston M, DePellegrin Connelly T, Marts S, Winston F. Presenting GENETICS: honoring the past, embracing the future. Genetics. 2009 Dec; 183(4):1203. PMID: 19996373; PMCID: PMC2787413.
  20. Winston F. A transcription switch toggled by noncoding RNAs. Proc Natl Acad Sci U S A. 2009 Oct 27; 106(43):18049-50. PMID: 19846777; PMCID: PMC2775307.
  21. Helmlinger D, Marguerat S, Villén J, Gygi SP, Bähler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev. 2008 Nov 15; 22(22):3184-95. PMID: 19056896; PMCID: PMC2593614.
  22. Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol. 2008 Nov 11; 6(11):e277. PMID: 18998772.
    View in: PubMed
  23. Monahan BJ, Villén J, Marguerat S, Bähler J, Gygi SP, Winston F. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008 Aug; 15(8):873-80. PMID: 18622392.
    View in: PubMed
  24. Treco DA, Winston F. Growth and manipulation of yeast. Curr Protoc Mol Biol. 2008 Apr; Chapter 13:Unit 13.2. PMID: 18425759.
    View in: PubMed
  25. Winston F. EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol. 2008 Apr; Chapter 13:Unit 13.3B. PMID: 18425760.
    View in: PubMed
  26. Zhang L, Fletcher AG, Cheung V, Winston F, Stargell LA. Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol. 2008 Feb; 28(4):1393-403. PMID: 18086892; PMCID: PMC2258746.
  27. Laprade L, Rose D, Winston F. Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8. Genetics. 2007 Dec; 177(4):2007-17. PMID: 18073420; PMCID: PMC2219495.
  28. Hickman MJ, Winston F. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol. 2007 Nov; 27(21):7414-24. PMID: 17785431; PMCID: PMC2169065.
  29. Duina AA, Rufiange A, Bracey J, Hall J, Nourani A, Winston F. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics. 2007 Sep; 177(1):101-12. PMID: 17603125; PMCID: PMC2013732.
  30. Dobi KC, Winston F. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol. 2007 Aug; 27(15):5575-86. PMID: 17526727; PMCID: PMC1952096.
  31. Libuda DE, Winston F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature. 2006 Oct 26; 443(7114):1003-7. PMID: 17066037; PMCID: PMC3365550.
  32. Nourani A, Robert F, Winston F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol Cell Biol. 2006 Feb; 26(4):1496-509. PMID: 16449659; PMCID: PMC1367203.
  33. Martens JA, Wu PY, Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 2005 Nov 15; 19(22):2695-704. PMID: 16291644; PMCID: PMC1283962.
  34. Prather D, Krogan NJ, Emili A, Greenblatt JF, Winston F. Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Mol Cell Biol. 2005 Nov; 25(22):10122-35. PMID: 16260625; PMCID: PMC1280281.
  35. Prather DM, Larschan E, Winston F. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae. Mol Cell Biol. 2005 Apr; 25(7):2650-9. PMID: 15767671; PMCID: PMC1061654.
  36. Arndt K, Winston F. An unexpected role for ubiquitylation of a transcriptional activator. Cell. 2005 Mar 25; 120(6):733-4. PMID: 15797373.
    View in: PubMed
  37. Hess D, Winston F. Evidence that Spt10 and Spt21 of Saccharomyces cerevisiae play distinct roles in vivo and functionally interact with MCB-binding factor, SCB-binding factor and Snf1. Genetics. 2005 May; 170(1):87-94. PMID: 15744051; PMCID: PMC1449726.
  38. Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol. 2005 Jan; 25(1):114-23. PMID: 15601835; PMCID: PMC538787.
  39. Kaplan CD, Holland MJ, Winston F. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem. 2005 Jan 14; 280(2):913-22. PMID: 15531585.
    View in: PubMed
  40. Dror V, Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol. 2004 Sep; 24(18):8227-35. PMID: 15340082; PMCID: PMC515061.
  41. Wu PY, Ruhlmann C, Winston F, Schultz P. Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell. 2004 Jul 23; 15(2):199-208. PMID: 15260971.
    View in: PubMed
  42. Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FC, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell. 2004 Jun 04; 14(5):553-7. PMID: 15175151.
    View in: PubMed
  43. Martens JA, Laprade L, Winston F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature. 2004 Jun 03; 429(6991):571-4. PMID: 15175754.
    View in: PubMed
  44. Hess D, Liu B, Roan NR, Sternglanz R, Winston F. Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol Cell Biol. 2004 Jan; 24(1):135-43. PMID: 14673149; PMCID: PMC303362.
  45. Duina AA, Winston F. Analysis of a mutant histone H3 that perturbs the association of Swi/Snf with chromatin. Mol Cell Biol. 2004 Jan; 24(2):561-72. PMID: 14701730; PMCID: PMC343804.
  46. Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science. 2003 Aug 22; 301(5636):1096-9. PMID: 12934008.
    View in: PubMed
  47. Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev. 2003 Apr; 13(2):136-42. PMID: 12672490.
    View in: PubMed
  48. Martens JA, Winston F. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev. 2002 Sep 01; 16(17):2231-6. PMID: 12208846; PMCID: PMC186664.
  49. Wu PY, Winston F. Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex. Mol Cell Biol. 2002 Aug; 22(15):5367-79. PMID: 12101232; PMCID: PMC133947.
  50. Hongay C, Jia N, Bard M, Winston F. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J. 2002 Aug 01; 21(15):4114-24. PMID: 12145211; PMCID: PMC126159.
  51. Laprade L, Boyartchuk VL, Dietrich WF, Winston F. Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence. Genetics. 2002 Jun; 161(2):509-19. PMID: 12072450; PMCID: PMC1462142.
  52. Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol. 2002 Jan 22; 12(2):165-70. PMID: 11818070.
    View in: PubMed
  53. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 2001 Dec 15; 15(24):3286-95. PMID: 11751634; PMCID: PMC312847.
  54. Larschan E, Winston F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 2001 Aug 01; 15(15):1946-56. PMID: 11485989; PMCID: PMC312753.
  55. Treco DA, Winston F. Growth and manipulation of yeast. Curr Protoc Mol Biol. 2001 May; Chapter 13:Unit13.2. PMID: 18265098.
    View in: PubMed
  56. Zhou H, Winston F. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet. 2001; 2:5. PMID: 11281938; PMCID: PMC31344.
  57. Winston F. Control of eukaryotic transcription elongation. Genome Biol. 2001; 2(2):REVIEWS1006. PMID: 11182892; PMCID: PMC138904.
  58. Kaplan CD, Morris JR, Wu C, Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 2000 Oct 15; 14(20):2623-34. PMID: 11040216; PMCID: PMC316994.
  59. Sudarsanam P, Winston F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 2000 Aug; 16(8):345-51. PMID: 10904263.
    View in: PubMed
  60. Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature. 2000 Jun 08; 405(6787):701-4. PMID: 10864329.
    View in: PubMed
  61. Pinto I, Winston F. Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J. 2000 Apr 03; 19(7):1598-612. PMID: 10747028; PMCID: PMC310229.
  62. Sudarsanam P, Iyer VR, Brown PO, Winston F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Mar 28; 97(7):3364-9. PMID: 10725359; PMCID: PMC16245.
  63. Dudley AM, Rougeulle C, Winston F. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 1999 Nov 15; 13(22):2940-5. PMID: 10580001; PMCID: PMC317152.
  64. Cairns BR, Schlichter A, Erdjument-Bromage H, Tempst P, Kornberg RD, Winston F. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell. 1999 Nov; 4(5):715-23. PMID: 10619019.
    View in: PubMed
  65. Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell. 1999 Oct; 4(4):657-64. PMID: 10549298.
    View in: PubMed
  66. Winston F, Allis CD. The bromodomain: a chromatin-targeting module? Nat Struct Biol. 1999 Jul; 6(7):601-4. PMID: 10404206.
    View in: PubMed
  67. Sudarsanam P, Cao Y, Wu L, Laurent BC, Winston F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 1999 Jun 01; 18(11):3101-6. PMID: 10357821; PMCID: PMC1171391.
  68. Dudley AM, Gansheroff LJ, Winston F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics. 1999 Apr; 151(4):1365-78. PMID: 10101163; PMCID: PMC1460567.
  69. Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol. 1999 Jan; 19(1):86-98. PMID: 9858534; PMCID: PMC83868.
  70. Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol Cell. 1998 Nov; 2(5):639-51. PMID: 9844636.
    View in: PubMed
  71. Yu J, Madison JM, Mundlos S, Winston F, Olsen BR. Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H). Genomics. 1998 Oct 01; 53(1):90-6. PMID: 9787080.
    View in: PubMed
  72. Madison JM, Dudley AM, Winston F. Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae. Mol Cell Biol. 1998 Apr; 18(4):1879-90. PMID: 9528759; PMCID: PMC121417.
  73. Madison JM, Winston F. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains. Yeast. 1998 Mar 30; 14(5):409-17. PMID: 9559549.
    View in: PubMed
  74. Hartzog GA, Wada T, Handa H, Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 1998 Feb 01; 12(3):357-69. PMID: 9450930; PMCID: PMC316481.
  75. Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998 Feb 01; 12(3):343-56. PMID: 9450929; PMCID: PMC316480.
  76. Winston F, Sudarsanam P. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. Cold Spring Harb Symp Quant Biol. 1998; 63:553-61. PMID: 10384320.
    View in: PubMed
  77. Wu L, Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 1997 Nov 01; 25(21):4230-4. PMID: 9336451; PMCID: PMC147028.
  78. Roberts SM, Winston F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics. 1997 Oct; 147(2):451-65. PMID: 9335585; PMCID: PMC1208170.
  79. Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997 Jul 01; 11(13):1640-50. PMID: 9224714.
    View in: PubMed
  80. Hartzog GA, Winston F. Nucleosomes and transcription: recent lessons from genetics. Curr Opin Genet Dev. 1997 Apr; 7(2):192-8. PMID: 9115423.
    View in: PubMed
  81. Madison JM, Winston F. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Jan; 17(1):287-95. PMID: 8972209; PMCID: PMC231753.
  82. Bortvin A, Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science. 1996 Jun 07; 272(5267):1473-6. PMID: 8633238.
    View in: PubMed
  83. Hartzog GA, Basrai MA, Ricupero-Hovasse SL, Hieter P, Winston F. Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun; 16(6):2848-56. PMID: 8649394; PMCID: PMC231277.
  84. Roberts SM, Winston F. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun; 16(6):3206-13. PMID: 8649431; PMCID: PMC231314.
  85. Arndt KM, Ricupero-Hovasse S, Winston F. TBP mutants defective in activated transcription in vivo. EMBO J. 1995 Apr 03; 14(7):1490-7. PMID: 7729424; PMCID: PMC398236.
  86. Hirschhorn JN, Bortvin AL, Ricupero-Hovasse SL, Winston F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol. 1995 Apr; 15(4):1999-2009. PMID: 7891695; PMCID: PMC230427.
  87. Gansheroff LJ, Dollard C, Tan P, Winston F. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics. 1995 Feb; 139(2):523-36. PMID: 7713415; PMCID: PMC1206364.
  88. Winston F, Dollard C, Ricupero-Hovasse SL. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995 Jan; 11(1):53-5. PMID: 7762301.
    View in: PubMed
  89. Dollard C, Ricupero-Hovasse SL, Natsoulis G, Boeke JD, Winston F. SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Aug; 14(8):5223-8. PMID: 8035801; PMCID: PMC359041.
  90. Eisenmann DM, Chapon C, Roberts SM, Dollard C, Winston F. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics. 1994 Jul; 137(3):647-57. PMID: 8088510; PMCID: PMC1206024.
  91. Arndt KM, Wobbe CR, Ricupero-Hovasse S, Struhl K, Winston F. Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities. Mol Cell Biol. 1994 Jun; 14(6):3719-28. PMID: 8196615; PMCID: PMC358739.
  92. Natsoulis G, Winston F, Boeke JD. The SPT10 and SPT21 genes of Saccharomyces cerevisiae. Genetics. 1994 Jan; 136(1):93-105. PMID: 8138180; PMCID: PMC1205796.
  93. Prelich G, Winston F. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics. 1993 Nov; 135(3):665-76. PMID: 8293972; PMCID: PMC1205711.
  94. Malone EA, Fassler JS, Winston F. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol Gen Genet. 1993 Mar; 237(3):449-59. PMID: 8483459.
    View in: PubMed
  95. Hirschhorn JN, Brown SA, Clark CD, Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 1992 Dec; 6(12A):2288-98. PMID: 1459453.
    View in: PubMed
  96. Winston F, Carlson M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992 Nov; 8(11):387-91. PMID: 1332230.
    View in: PubMed
  97. Happel AM, Winston F. A mutant tRNA affects delta-mediated transcription in Saccharomyces cerevisiae. Genetics. 1992 Oct; 132(2):361-74. PMID: 1330824; PMCID: PMC1205142.
  98. Swanson MS, Winston F. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics. 1992 Oct; 132(2):325-36. PMID: 1330823; PMCID: PMC1205139.
  99. Eisenmann DM, Arndt KM, Ricupero SL, Rooney JW, Winston F. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 1992 Jul; 6(7):1319-31. PMID: 1628834.
    View in: PubMed
  100. Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992 May 25; 20(10):2603. PMID: 1350857; PMCID: PMC312404.
  101. Arndt KM, Ricupero SL, Eisenmann DM, Winston F. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro. Mol Cell Biol. 1992 May; 12(5):2372-82. PMID: 1569955; PMCID: PMC364409.
  102. Natsoulis G, Dollard C, Winston F, Boeke JD. The products of the SPT10 and SPT21 genes of Saccharomyces cerevisiae increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biol. 1991 Dec; 3(12):1249-59. PMID: 1667480.
    View in: PubMed
  103. Malone EA, Clark CD, Chiang A, Winston F. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov; 11(11):5710-7. PMID: 1922073; PMCID: PMC361942.
  104. Swanson MS, Malone EA, Winston F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol Cell Biol. 1991 Aug; 11(8):4286. PMID: 2072920; PMCID: PMC361262.
  105. Swanson MS, Malone EA, Winston F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol Cell Biol. 1991 Jun; 11(6):3009-19. PMID: 1840633; PMCID: PMC360134.
  106. Happel AM, Swanson MS, Winston F. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics. 1991 May; 128(1):69-77. PMID: 1648006; PMCID: PMC1204454.
  107. Hoffman CS, Winston F. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev. 1991 Apr; 5(4):561-71. PMID: 1849107.
    View in: PubMed
  108. Swanson MS, Carlson M, Winston F. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol. 1990 Sep; 10(9):4935-41. PMID: 2201908; PMCID: PMC361114.
  109. Fikes JD, Becker DM, Winston F, Guarente L. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature. 1990 Jul 19; 346(6281):291-4. PMID: 2197558.
    View in: PubMed
  110. Walker J, Chen TA, Sterner R, Berger M, Winston F, Allfrey VG. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J Biol Chem. 1990 Apr 05; 265(10):5736-46. PMID: 2180934.
    View in: PubMed
  111. Hoffman CS, Winston F. Isolation and characterization of mutants constitutive for expression of the fbp1 gene of Schizosaccharomyces pombe. Genetics. 1990 Apr; 124(4):807-16. PMID: 2157626; PMCID: PMC1203973.
  112. Hoffman CS, Winston F. A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene. 1989 Dec 14; 84(2):473-9. PMID: 2558974.
    View in: PubMed
  113. Fassler JS, Winston F. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol Cell Biol. 1989 Dec; 9(12):5602-9. PMID: 2685570; PMCID: PMC363730.
  114. Natsoulis G, Thomas W, Roghmann MC, Winston F, Boeke JD. Ty1 transposition in Saccharomyces cerevisiae is nonrandom. Genetics. 1989 Oct; 123(2):269-79. PMID: 2555252; PMCID: PMC1203799.
  115. Eisenmann DM, Dollard C, Winston F. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell. 1989 Sep 22; 58(6):1183-91. PMID: 2673545.
    View in: PubMed
  116. Hirschman JE, Durbin KJ, Winston F. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov; 8(11):4608-15. PMID: 2850465; PMCID: PMC365549.
  117. Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 1988 Feb; 2(2):150-9. PMID: 2834270.
    View in: PubMed
  118. Hirschhorn JN, Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Feb; 8(2):822-7. PMID: 3127692; PMCID: PMC363210.
  119. Fassler JS, Winston F. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics. 1988 Feb; 118(2):203-12. PMID: 2834263; PMCID: PMC1203274.
  120. Winston F, Dollard C, Malone EA, Clare J, Kapakos JG, Farabaugh P, Minehart PL. Three genes are required for trans-activation of Ty transcription in yeast. Genetics. 1987 Apr; 115(4):649-56. PMID: 3034719; PMCID: PMC1203097.
  121. Clark-Adams CD, Winston F. The SPT6 gene is essential for growth and is required for delta-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Feb; 7(2):679-86. PMID: 3029564; PMCID: PMC365124.
  122. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987; 57(2-3):267-72. PMID: 3319781.
    View in: PubMed
  123. Winston F, Minehart PL. Analysis of the yeast SPT3 gene and identification of its product, a positive regulator of Ty transcription. Nucleic Acids Res. 1986 Sep 11; 14(17):6885-900. PMID: 3020500; PMCID: PMC311706.
  124. Winston F, Durbin KJ, Fink GR. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell. 1984 Dec; 39(3 Pt 2):675-82. PMID: 6096019.
    View in: PubMed
  125. Winston F, Chaleff DT, Valent B, Fink GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics. 1984 Jun; 107(2):179-97. PMID: 6329902; PMCID: PMC1202318.
  126. Simchen G, Winston F, Styles CA, Fink GR. Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc Natl Acad Sci U S A. 1984 Apr; 81(8):2431-4. PMID: 6326126; PMCID: PMC345074.
  127. Rose M, Winston F. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol Gen Genet. 1984; 193(3):557-60. PMID: 6323928.
    View in: PubMed
  128. Winston F, Chumley F, Fink GR. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983; 101:211-28. PMID: 6310325.
    View in: PubMed
  129. Winston F, Botstein D. Control of lysogenization by phage P22. I. The P22 cro gene. J Mol Biol. 1981 Oct 25; 152(2):209-32. PMID: 7328656.
    View in: PubMed
  130. Winston F, Botstein D. Control of lysogenization by phage P22. II. Mutations (clyA) in the cl gene that cause increased lysogenization. J Mol Biol. 1981 Oct 25; 152(2):233-45. PMID: 7328657.
    View in: PubMed
  131. Winston F, Botstein D, Miller JH. Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol. 1979 Jan; 137(1):433-9. PMID: 368021; PMCID: PMC218467.
Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: HMS/HSDM faculty should contact feedbackcatalyst.harvard.edu. For faculty or fellow appointment updates and changes, please ask your appointing department to contact HMS. For fellow personal and demographic information, contact HMS Human Resources at human_resourceshms.harvard.edu. For faculty personal and demographic information, contact HMS Office for Faculty Affairs at facappthms.harvard.edu.
Winston's Networks
Click the
buttons for more information and interactive visualizations!
Concepts (348)
Co-Authors (18)
Similar People (60)
Same Department 
Physical Neighbors
Funded by the NIH/NCATS Clinical and Translational Science Award (CTSA) program, grant number UL1TR001102, and through institutional support from Harvard University, Harvard Medical School, Harvard T.H. Chan School of Public Health, Beth Israel Deaconess Medical Center, Boston Children's Hospital, Brigham and Women's Hospital, Massachusetts General Hospital and the Dana Farber Cancer Institute.