Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Koen Van Leemput, Ph.D.

Concepts

This page shows the publications Koen Van Leemput has written about Hippocampus.
Connection Strength

0.514
  1. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, Dickerson BC, Golland P, Fischl B. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus. 2009 Jun; 19(6):549-57.
    View in: PubMed
    Score: 0.176
  2. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, Dickerson BC, Golland P, Fischl B. Model-based segmentation of hippocampal subfields in ultra-high resolution in vivo MRI. Med Image Comput Comput Assist Interv. 2008; 11(Pt 1):235-43.
    View in: PubMed
    Score: 0.160
  3. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage. 2015 Jul 15; 115:117-37.
    View in: PubMed
    Score: 0.066
  4. Iglesias JE, Sabuncu MR, Van Leemput K. Improved inference in Bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry. Med Image Anal. 2013 Oct; 17(7):766-78.
    View in: PubMed
    Score: 0.058
  5. Iglesias JE, Sabuncu MR, Van Leemput K. Incorporating parameter uncertainty in Bayesian segmentation models: application to hippocampal subfield volumetry. Med Image Comput Comput Assist Interv. 2012; 15(Pt 3):50-7.
    View in: PubMed
    Score: 0.053
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.