Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Jin-Ah Park, Ph.D.

Title
Institution
Department
Address
Phone
Profile Picture

Biography
2017
International Research Visiting Fellowship (The University of Newcastle, Australia)
2014
Ann Woolcock Memorial Award (American Thoracic Society)
2013 - 2016
Parker B. Francis Fellowship
2013 - 2016
Scientist Development Grant, AHA

Overview
My research focuses on the role of airway epithelium in the lung. The airway epithelium is the first line of defense against external stimuli. Airway epithelial cells lining on the airway epithelium contribute to homeostasis in the lung, but when they are exposed to excessive biochemical or physical stimuli, the normal defense mechanism turns into the progression of various pathophysiologic conditions. Airway epithelial cells also play important roles in innate and adaptive immunities and inflammation.

Much of the morbidity and mortality associated with persistent asthma is attributable to progressive and irreversible remodeling of the airway wall. Most theories concerning airway remodeling argue that the remodeling process is triggered in response to inflammatory mediators and cytokines.

We hypothesize that airway remodeling is triggered in response to the mechanical stress imposed on the airway epithelium during bronchoconstriction.

We use a compressive in vitro model system (Figure 1). In this system, primary human bronchial epithelial cells are grown in an air-liquid interface (ALI) culture and subjected to compressive stress, which is modeled through the application of a transepithelial pressure gradient at a magnitude of 20 to 30 cm H2O. This magnitude of stress is similar to the magnitude that bronchoconstriction imposes on the airway epithelium, and is significantly higher than the magnitude experienced during normal breathing. The compressive in vitro system recapitulates many aspects of airway remodeling in the absence of inflammatory cells (Putting the Squeeze on Airway Epithelia, Park et al. Physiology. 2015).

The findings using the compressive in vitro system have already led to experiments in humans showing that methacholine-induced bronchoconstriction, in the absence of eosinophilic inflammation, can lead to collagen deposition under the epithelial monolayer, enhanced expression of TGF-*, and increased numbers of goblet cells - key aspects of airway remodeling. These experiments provide in vivo validation of our experimental approach.

A full understanding of the asthmatic response requires many different models; in vitro compressive model system highlights and isolates the effects of mechanical stress on airway epithelial cells. We also use mouse asthma models to verify the physiological effects of target molecules and to identify further mechanisms.

Research
The research activities and funding listed below are automatically derived from NIH ExPORTER and other sources, which might result in incorrect or missing items. Faculty can login to make corrections and additions.
  1. (Jin-Ah Park) Feb 9, 2023 - Jan 31, 2026
    Chemical Insights Research Institute
    Mechanisms of cellular plasticity caused by chemicals of emerging concern
    Role: PI
  2. R01HL148152 (FREDBERG, JEFFREY J ;PARK, JIN-AH) Aug 15, 2019 - Apr 30, 2024
    NIH
    Physics of bronchial epithelial unjamming
    Role: Co-PI

Bibliographic
Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
Updating...
This operation might take several minutes to complete. Please do not close your browser.
Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: SPH faculty should contact Faculty Affairs at facultyaffairshsph.harvard.edu.
Park's Networks
Click the
Explore
buttons for more information and interactive visualizations!
Concepts (188)
Explore
_
Co-Authors (50)
Explore
_
Similar People (60)
Explore
_
Same Department 
Explore
_
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.