Contact, publication, and social network information about Harvard faculty and fellows. Harvard Catalyst Profiles
Check out the new look and feel of Harvard Catalyst Profiles! Learn more on our About and Help pages.

Gabriel Kreiman, Ph.D.

Profile Picture

National Math Olympiads
Argentine Chemistry Associtation
Milton Clauser Doctoral Prize
Lawrence Ferguzon Prize
2003 - 2006
MIT Dean of Science Whiteman Award
2007 - 2008
Career Development Award
Klingenstein Fund Award
Whitehall Foundation Award
2009 - 2014
NIH New Innovator Award
2010 - 2014
National Science Foundation Career Award
Pisart Award for Vision Research

Kreiman Lab Web Site

Available: 05/01/17, Expires: 04/30/19

This project involves studying the mechanisms underlying transcriptional and translation control by combining computational/mathematical modeling, analyses of genomic and other data sets and development of quantitative models. The student will investigate several aspects of transcriptional and translational control including the histone code, alternative splicing, promoters and transcription factor interactions. The student will work together with researchers in the lab including the PI to enhance his/her learning experience. The goal is for the student to become increasingly independent and lead the project including publication of the results. The student will acquire several skills including machine learning, programming, computational modeling, bioinformatics, computational/systems biology.

Available: 07/27/17, Expires: 08/01/18

Applications are invited for a Research Assistant position in the Kreiman lab. We are looking for an innovative and enthusiastic researcher person with experience and interest in Neuroscience research. The research efforts will involve conducting neurophysiological and psychophysics studies in human subejcts.

To be considered for this position please submit your application including

  • CV
  • list of publications
  • names of three people that are familiar with your work

    Gabriel Kreiman
    For more information about the lab and recent publications, see:

  • Available: 08/01/17, Expires: 08/01/18

    1) Study the neuronal circuits involved in visual recognition 2) Develop biophysically inspired models of visual recognition Visit for more details

    Available: 08/01/17, Expires: 08/01/18

    Understand the neuronal circuits and mechanisms for memory formation in the human brain
    Visit for more information

    Visual Object Recognition[login at prompt]
    Available: 08/01/17, Expires: 08/01/18

    Investigate the mechanisms of visual object recognition. The student will perform research in the lab, investigating the neuronal circuits and mechanisms involved in visual object recognition. The research efforts involve one or more of the following: 1) psychophysics of visual object recognition whereby we investigate how well subjects can recognize objects in transformation-invariant manner and the development of visual recognition skills 2) use of computational tools to model human visual recognition and compare computer vision versus human vision 3) neurophysiological studies to investigate the circuits in the human temporal lobe involved in visual recognition.

    Available: 08/01/17, Expires: 08/01/18

    The Kreiman Lab [] combines neurophysiological measurements, psychophysics and computational modeling to study the neuronal circuits and mechanisms underlying cognition. The lab has open positions for enthusiastic students interested in research:

    1) Neurophysiology and psychophysics of visual recognition. Our visual system has the remarkable ability of recognizing patterns (e.g. faces) in spite of major changes in the image (e.g. changes in illumination, rotation, etc.). The aim of this project is to combine neurophysiological recordings and quantitative study of behavioral recognition performance to understand how we can recognize objects in a transformation-tolerant manner.
    2) Towards an artificial vision system. The aim of this project is to develop a computational model and algorithm that can mimic and capture the essential principles behind visual recognition in the primate brain. The performance of the computational algorithm will be compared against quantitative behavioral measurements, neurophysiology and will also be tested in real-world recognition applications.
    3) Development of the visual recognition machinery.
    For publications and more information about the lab, please visit us at:

    Sample publications:

    Neuron (2011). 69: 548-562.
    Current Biology (2010) 20:872-879.
    Nature (2010). 465:182-187.
    Neuron (2009) 62:281-290.
    Current Opinion in Neurobiology (2007) 17:471-475
    Progress In Brain Research (2007)165C:33-56.
    Science (2005) 310:863-866.
    Nature (2005) 435:1102-

    Available: 08/01/17, Expires: 08/01/18

    This project will focus on understanding the biological codes involved in transcriptional regulation as well as translational regulation. Using computational modeling, high-throughput RNA sequencing data and MS proteomic data, the goal is to unravel the biological mechanisms to control transcription and the relationships between transcript production and protein production.

    The research activities and funding listed below are automatically derived from NIH ExPORTER and other sources, which might result in incorrect or missing items. Faculty can login to make corrections and additions.
    1. R21DA042020 (KREIMAN, GABRIEL) Feb 1, 2017 - Jan 31, 2019
      Neural circuits for cognitive control
      Role: Principal Investigator
    2. R21MH107820 (KREIMAN, GABRIEL) Jun 1, 2016 - May 31, 2018
      Neural Circuitry of Threat Perception: Implications for Anxiety and Paranoia
      Role: Principal Investigator
    3. R01EY026025 (KREIMAN, GABRIEL) Mar 1, 2016 - Feb 28, 2019
      Neural dynamics underlying spatiotemporal cognitive integration
      Role: Principal Investigator
    4. R01GM112007 (STEEN, JUDITH A.) Apr 1, 2015 - Mar 31, 2019
      Proteogenomics to characterize novel non-coding and extragenic translation
      Role: Principal Investigator
    5. R21NS070250 (KREIMAN, GABRIEL) Apr 1, 2011 - Mar 31, 2013
      Interictal discharge events: from physiological effects to cognitive consequences
      Role: Principal Investigator

    Featured Content

    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    List All   |   Timeline
    1. Isik L, Singer J, Madsen JR, Kanwisher N, Kreiman G. What is changing when: Decoding visual information in movies from human intracranial recordings. Neuroimage. 2017 Aug 18. PMID: 28823828.
      View in: PubMed
    2. Tang H, Singer J, Ison MJ, Pivazyan G, Romaine M, Frias R, Meller E, Boulin A, Carroll J, Perron V, Dowcett S, Arellano M, Kreiman G. Predicting episodic memory formation for movie events. Sci Rep. 2016 Sep 30; 6:30175. PMID: 27686330.
      View in: PubMed
    3. Kreiman G. A null model for cortical representations with grandmothers galore. Lang Cogn Neurosci. 2017; 32(3):274-285. PMID: 29204455.
      View in: PubMed
    4. Gómez-Laberge C, Smolyanskaya A, Nassi JJ, Kreiman G, Born RT. Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron. 2016 Aug 03; 91(3):540-547. PMID: 27427459.
      View in: PubMed
    5. Tang S, Hemberg M, Cansizoglu E, Belin S, Kosik K, Kreiman G, Steen H, Steen J. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome. Nucleic Acids Res. 2016 06 02; 44(10):e97. PMID: 26980280; PMCID: PMC4889934.
    6. Tang H, Yu HY, Chou CC, Crone NE, Madsen JR, Anderson WS, Kreiman G. Cascade of neural processing orchestrates cognitive control in human frontal cortex. Elife. 2016 Feb 18; 5. PMID: 26888070; PMCID: PMC4811762.
    7. Miconi T, Groomes L, Kreiman G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cereb Cortex. 2016 07; 26(7):3064-82. PMID: 26092221; PMCID: PMC4898665 [Available on 07/01/17].
    8. Madhavan R, Millman D, Tang H, Crone NE, Lenz FA, Tierney TS, Madsen JR, Kreiman G, Anderson WS. Decrease in gamma-band activity tracks sequence learning. Front Syst Neurosci. 2014; 8:222. PMID: 25653598; PMCID: PMC4300908.
    9. Singer JM, Madsen JR, Anderson WS, Kreiman G. Sensitivity to timing and order in human visual cortex. J Neurophysiol. 2015 Mar 01; 113(5):1656-69. PMID: 25429116; PMCID: PMC4346714.
    10. Prabakaran S, Hemberg M, Chauhan R, Winter D, Tweedie-Cullen RY, Dittrich C, Hong E, Gunawardena J, Steen H, Kreiman G, Steen JA. Quantitative profiling of peptides from RNAs classified as noncoding. Nat Commun. 2014 Nov 18; 5:5429. PMID: 25403355; PMCID: PMC4416701.
    11. Tang H, Buia C, Madhavan R, Crone NE, Madsen JR, Anderson WS, Kreiman G. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron. 2014 Aug 06; 83(3):736-48. PMID: 25043420; PMCID: PMC4134509.
    12. Nassi JJ, Gómez-Laberge C, Kreiman G, Born RT. Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci. 2014; 8:105. PMID: 24910596; PMCID: PMC4039070.
    13. Singer JM, Kreiman G. Short temporal asynchrony disrupts visual object recognition. J Vis. 2014 May 12; 14(5):7. PMID: 24819738; PMCID: PMC4527717.
    14. Bansal AK, Madhavan R, Agam Y, Golby A, Madsen JR, Kreiman G. Neural dynamics underlying target detection in the human brain. J Neurosci. 2014 Feb 19; 34(8):3042-55. PMID: 24553944; PMCID: PMC3931508.
    15. Murugan R, Kreiman G. Theory on the coupled stochastic dynamics of transcription and splice-site recognition. PLoS Comput Biol. 2012; 8(11):e1002747. PMID: 23133354; PMCID: PMC3486868.
    16. Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. J Neurophysiol. 2012 Dec; 108(11):3073-86. PMID: 22956795; PMCID: PMC3544863.
    17. Hemberg M, Gray JM, Cloonan N, Kuersten S, Grimmond S, Greenberg ME, Kreiman G. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Res. 2012 Sep; 40(16):7858-69. PMID: 22684627; PMCID: PMC3439890.
    18. Burbank KS, Kreiman G. Depression-biased reverse plasticity rule is required for stable learning at top-down connections. PLoS Comput Biol. 2012; 8(3):e1002393. PMID: 22396630; PMCID: PMC3291526.
    19. Kreiman G, Maunsell JH. Nine criteria for a measure of scientific output. Front Comput Neurosci. 2011; 5:48. PMID: 22102840; PMCID: PMC3214728.
    20. Tang H, Kreiman G. Face recognition: vision and emotions beyond the bubble. Curr Biol. 2011 Nov 08; 21(21):R888-90. PMID: 22075428; PMCID: PMC4122972.
    21. Murugan R, Kreiman G. On the minimization of fluctuations in the response times of autoregulatory gene networks. Biophys J. 2011 Sep 21; 101(6):1297-306. PMID: 21943410; PMCID: PMC3177052.
    22. Hemberg M, Kreiman G. Conservation of transcription factor binding events predicts gene expression across species. Nucleic Acids Res. 2011 Sep 01; 39(16):7092-102. PMID: 21622661; PMCID: PMC3167604.
    23. Fried I, Mukamel R, Kreiman G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron. 2011 Feb 10; 69(3):548-62. PMID: 21315264; PMCID: PMC3052770.
    24. Anderson WS, Kreiman G. Neuroscience: what we cannot model, we do not understand. Curr Biol. 2011 Feb 08; 21(3):R123-5. PMID: 21300278; PMCID: PMC3152973.
    25. Kreiman G. Decoding ensemble activity from neurophysiological recordings in the temporal cortex. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:5904-7. PMID: 22255683.
      View in: PubMed
    26. Blumberg J, Kreiman G. How cortical neurons help us see: visual recognition in the human brain. J Clin Invest. 2010 Sep; 120(9):3054-63. PMID: 20811161; PMCID: PMC2929717.
    27. Agam Y, Liu H, Papanastassiou A, Buia C, Golby AJ, Madsen JR, Kreiman G. Robust selectivity to two-object images in human visual cortex. Curr Biol. 2010 May 11; 20(9):872-9. PMID: 20417105; PMCID: PMC2869389.
    28. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010 May 13; 465(7295):182-7. PMID: 20393465; PMCID: PMC3020079.
    29. Quian Quiroga R, Kreiman G. Measuring sparseness in the brain: comment on Bowers (2009). Psychol Rev. 2010 Jan; 117(1):291-7. PMID: 20063978; PMCID: PMC3154835.
    30. Singer J, Kreiman G. Toward unmasking the dynamics of visual perception. Neuron. 2009 Nov 25; 64(4):446-7. PMID: 19945387; PMCID: PMC2803075.
    31. Rasch M, Logothetis NK, Kreiman G. From neurons to circuits: linear estimation of local field potentials. J Neurosci. 2009 Nov 04; 29(44):13785-96. PMID: 19889990; PMCID: PMC2924964.
    32. Liu H, Agam Y, Madsen JR, Kreiman G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron. 2009 Apr 30; 62(2):281-90. PMID: 19409272; PMCID: PMC2921507.
    33. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol. 2008 Sep; 100(3):1407-19. PMID: 18562555; PMCID: PMC2544466.
    34. Kreiman G. Single unit approaches to human vision and memory. Curr Opin Neurobiol. 2007 Aug; 17(4):471-5. PMID: 17703936.
      View in: PubMed
    35. Leamey CA, Glendining KA, Kreiman G, Kang ND, Wang KH, Fassler R, Sawatari A, Tonegawa S, Sur M. Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. Cereb Cortex. 2008 Jan; 18(1):53-66. PMID: 17478416.
      View in: PubMed
    36. Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Prog Brain Res. 2007; 165:33-56. PMID: 17925239.
      View in: PubMed
    37. Tropea D, Kreiman G, Lyckman A, Mukherjee S, Yu H, Horng S, Sur M. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat Neurosci. 2006 May; 9(5):660-8. PMID: 16633343.
      View in: PubMed
    38. Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ. Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron. 2006 Feb 02; 49(3):433-45. PMID: 16446146.
      View in: PubMed
    39. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of object identity from macaque inferior temporal cortex. Science. 2005 Nov 04; 310(5749):863-6. PMID: 16272124.
      View in: PubMed
    40. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005 Jun 23; 435(7045):1102-7. PMID: 15973409.
      View in: PubMed
    41. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004; 5(10):R74. PMID: 15461793; PMCID: PMC545594.
    42. Crick F, Koch C, Kreiman G, Fried I. Consciousness and neurosurgery. Neurosurgery. 2004 Aug; 55(2):273-281; discussion 281-2. PMID: 15271233.
      View in: PubMed
    43. Kreiman G. Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Res. 2004; 32(9):2889-900. PMID: 15155858; PMCID: PMC419615.
    44. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004 Apr 20; 101(16):6062-7. PMID: 15075390; PMCID: PMC395923.
    45. Kreiman G, Fried I, Koch C. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci U S A. 2002 Jun 11; 99(12):8378-83. PMID: 12034865; PMCID: PMC123075.
    46. Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci. 2002 Apr; 3(4):261-70. PMID: 11967556.
      View in: PubMed
    47. Krahe R, Kreiman G, Gabbiani F, Koch C, Metzner W. Stimulus encoding and feature extraction by multiple sensory neurons. J Neurosci. 2002 Mar 15; 22(6):2374-82. PMID: 11896176.
      View in: PubMed
    48. Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci U S A. 2001 Apr 24; 98(9):5270-5. PMID: 11320257; PMCID: PMC33199.
    49. Kreiman G, Koch C, Fried I. Imagery neurons in the human brain. Nature. 2000 Nov 16; 408(6810):357-61. PMID: 11099042.
      View in: PubMed
    50. Kreiman G, Koch C, Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci. 2000 Sep; 3(9):946-53. PMID: 10966627.
      View in: PubMed
    51. Ouyang Y, Rosenstein A, Kreiman G, Schuman EM, Kennedy MB. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999 Sep 15; 19(18):7823-33. PMID: 10479685.
      View in: PubMed
    Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: HMS/HSDM faculty should contact For faculty or fellow appointment updates and changes, please ask your appointing department to contact HMS. For fellow personal and demographic information, contact HMS Human Resources at For faculty personal and demographic information, contact HMS Office for Faculty Affairs at
    Kreiman's Networks
    Click the
    buttons for more information and interactive visualizations!
    Concepts (193)
    Co-Authors (11)
    Similar People (60)
    Same Department 
    Physical Neighbors