Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Kenneth Carl Anderson, M.D.

Co-Author

This page shows the publications co-authored by Kenneth Anderson and Zachary Hunter.
Connection Strength

0.997
  1. Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv. 2018 11 13; 2(21):2937-2946.
    View in: PubMed
    Score: 0.203
  2. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood. 2016 08 11; 128(6):827-38.
    View in: PubMed
    Score: 0.171
  3. Lenalidomide and rituximab in Waldenstrom's macroglobulinemia. Clin Cancer Res. 2009 Jan 01; 15(1):355-60.
    View in: PubMed
    Score: 0.102
  4. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood. 2008 Dec 01; 112(12):4452-7.
    View in: PubMed
    Score: 0.100
  5. The HCK/BTK inhibitor KIN-8194 is active in MYD88 driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood. 2021 06 16.
    View in: PubMed
    Score: 0.061
  6. Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia. Clin Cancer Res. 2019 01 01; 25(1):369-377.
    View in: PubMed
    Score: 0.050
  7. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol. 2016 Mar; 172(5):735-44.
    View in: PubMed
    Score: 0.041
  8. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015 Jun; 21(6):572-80.
    View in: PubMed
    Score: 0.040
  9. MYD88-independent growth and survival effects of Sp1 transactivation in Waldenstrom macroglobulinemia. Blood. 2014 Apr 24; 123(17):2673-81.
    View in: PubMed
    Score: 0.037
  10. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013 Aug 15; 122(7):1222-32.
    View in: PubMed
    Score: 0.035
  11. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013 Mar 14; 121(11):2051-8.
    View in: PubMed
    Score: 0.034
  12. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma. Mol Cancer Ther. 2012 Apr; 11(4):942-51.
    View in: PubMed
    Score: 0.032
  13. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood. 2008 May 15; 111(10):5068-77.
    View in: PubMed
    Score: 0.024
  14. Establishment of BCWM.1 cell line for Waldenström's macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Exp Hematol. 2007 Sep; 35(9):1366-75.
    View in: PubMed
    Score: 0.023
  15. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood. 2007 Oct 01; 110(7):2561-4.
    View in: PubMed
    Score: 0.023
  16. CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom's Macroglobulinemia and mast cell disorders. Clin Lymphoma Myeloma. 2006 May; 6(6):478-83.
    View in: PubMed
    Score: 0.021
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.