Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Suk Tak Chan, Ph.D.

Co-Author

This page shows the publications co-authored by Suk Chan and Randy Gollub.
Connection Strength

0.758
  1. Author Correction: Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat Commun. 2020 08 25; 11(1):4347.
    View in: PubMed
    Score: 0.057
  2. Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat Commun. 2020 08 07; 11(1):3948.
    View in: PubMed
    Score: 0.057
  3. Acupuncture Treatment Modulates the Connectivity of Key Regions of the Descending Pain Modulation and Reward Systems in Patients with Chronic Low Back Pain. J Clin Med. 2020 Jun 03; 9(6).
    View in: PubMed
    Score: 0.056
  4. Impaired mesocorticolimbic connectivity underlies increased pain sensitivity in chronic low back pain. Neuroimage. 2020 09; 218:116969.
    View in: PubMed
    Score: 0.056
  5. Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. Neuroimage. 2020 08 15; 217:116899.
    View in: PubMed
    Score: 0.056
  6. Corrigendum to "Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain" [Neuroimage Clinical 23 (2019) 101885]. Neuroimage Clin. 2020; 25:102093.
    View in: PubMed
    Score: 0.055
  7. Corrigendum to 'Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain' Neuroimage Clinical, 23, 2019, 101885. Neuroimage Clin. 2019; 24:102105.
    View in: PubMed
    Score: 0.054
  8. Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain. 2019 07; 160(7):1594-1605.
    View in: PubMed
    Score: 0.053
  9. Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain. 2019 06; 160(6):1308-1318.
    View in: PubMed
    Score: 0.053
  10. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. Neuroimage Clin. 2019; 23:101885.
    View in: PubMed
    Score: 0.053
  11. Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth. 2019 Aug; 123(2):e303-e311.
    View in: PubMed
    Score: 0.052
  12. The relationship between catastrophizing and altered pain sensitivity in patients with chronic low-back pain. Pain. 2019 Apr; 160(4):833-843.
    View in: PubMed
    Score: 0.052
  13. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 2019; 22:101775.
    View in: PubMed
    Score: 0.052
  14. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain. 2019 Mar; 160(3):550-560.
    View in: PubMed
    Score: 0.052
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.