Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Paul Gerard Guy Richardson, M.B.,B.S.

Co-Author

This page shows the publications co-authored by Paul Richardson and Teru Hideshima.
Connection Strength

9.077
  1. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics. 2018 12; 15(12):1033-1052.
    View in: PubMed
    Score: 0.204
  2. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017 12; 36(4):561-584.
    View in: PubMed
    Score: 0.191
  3. p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017 03 09; 129(10):1308-1319.
    View in: PubMed
    Score: 0.180
  4. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proc Natl Acad Sci U S A. 2016 11 15; 113(46):13162-13167.
    View in: PubMed
    Score: 0.177
  5. Novel targeted agents in the treatment of multiple myeloma. Hematol Oncol Clin North Am. 2014 Oct; 28(5):903-25.
    View in: PubMed
    Score: 0.152
  6. A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood. 2014 Mar 06; 123(10):1461-9.
    View in: PubMed
    Score: 0.146
  7. New proteasome inhibitors in myeloma. Curr Hematol Malig Rep. 2012 Dec; 7(4):258-66.
    View in: PubMed
    Score: 0.135
  8. Perifosine , an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012 May; 8(5):623-33.
    View in: PubMed
    Score: 0.130
  9. The potential benefits of participating in early-phase clinical trials in multiple myeloma: long-term remission in a patient with relapsed multiple myeloma treated with 90 cycles of lenalidomide and bortezomib. Eur J Haematol. 2012 May; 88(5):446-9.
    View in: PubMed
    Score: 0.128
  10. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. . 2011 Nov; 10(11):2034-42.
    View in: PubMed
    Score: 0.125
  11. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol. 2011 Nov 10; 29(32):4243-9.
    View in: PubMed
    Score: 0.125
  12. Managing multiple myeloma: the emerging role of novel therapies and adapting combination treatment for higher risk settings. Br J Haematol. 2011 Sep; 154(6):755-62.
    View in: PubMed
    Score: 0.123
  13. Lenalidomide in multiple myeloma: an evidence-based review of its role in therapy. Core Evid. 2010 Jun 15; 4:215-45.
    View in: PubMed
    Score: 0.114
  14. The treatment of multiple myeloma patients not eligible for asct. Mediterr J Hematol Infect Dis. 2010 May 03; 2(2):e2010009.
    View in: PubMed
    Score: 0.113
  15. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 2010 Aug 05; 116(5):679-86.
    View in: PubMed
    Score: 0.113
  16. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010 May 06; 115(18):3772-5.
    View in: PubMed
    Score: 0.112
  17. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009 Oct; 7(9):947-60.
    View in: PubMed
    Score: 0.108
  18. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol. 2009 Dec 01; 27(34):5713-9.
    View in: PubMed
    Score: 0.108
  19. Bortezomib in the management of multiple myeloma. Cancer Manag Res. 2009 Sep 08; 1:107-17.
    View in: PubMed
    Score: 0.108
  20. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009 Jul 30; 114(5):1046-52.
    View in: PubMed
    Score: 0.106
  21. Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol. 2009 Apr; 46(2):166-75.
    View in: PubMed
    Score: 0.105
  22. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood. 2009 May 21; 113(21):5228-36.
    View in: PubMed
    Score: 0.104
  23. Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther. 2008 Jul; 8(7):1053-72.
    View in: PubMed
    Score: 0.099
  24. A review of lenalidomide in combination with dexamethasone for the treatment of multiple myeloma. Ther Clin Risk Manag. 2008 Feb; 4(1):129-36.
    View in: PubMed
    Score: 0.097
  25. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol. 2007 Sep; 138(6):783-91.
    View in: PubMed
    Score: 0.094
  26. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007 Aug; 7(8):585-98.
    View in: PubMed
    Score: 0.093
  27. Novel therapeutic avenues in myeloma: changing the treatment paradigm. Oncology (Williston Park). 2007 Jun; 21(7):785-92; discussion 798-800.
    View in: PubMed
    Score: 0.092
  28. Emerging drugs in multiple myeloma. Expert Opin Emerg Drugs. 2007 Mar; 12(1):155-63.
    View in: PubMed
    Score: 0.091
  29. The emerging role of novel therapies for the treatment of relapsed myeloma. J Natl Compr Canc Netw. 2007 Feb; 5(2):149-62.
    View in: PubMed
    Score: 0.090
  30. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007; 317-23.
    View in: PubMed
    Score: 0.090
  31. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006 Oct 01; 12(19):5887-94.
    View in: PubMed
    Score: 0.088
  32. Lenalidomide in multiple myeloma. Expert Rev Anticancer Ther. 2006 Aug; 6(8):1165-73.
    View in: PubMed
    Score: 0.087
  33. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006 Nov 15; 108(10):3458-64.
    View in: PubMed
    Score: 0.087
  34. Current therapeutic uses of lenalidomide in multiple myeloma. Expert Opin Investig Drugs. 2006 Feb; 15(2):171-9.
    View in: PubMed
    Score: 0.084
  35. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006 May 15; 107(10):4053-62.
    View in: PubMed
    Score: 0.084
  36. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med. 2006; 57:33-47.
    View in: PubMed
    Score: 0.084
  37. New treatments for multiple myeloma. Oncology (Williston Park). 2005 Dec; 19(14):1781-92; discussion 1792, 1795-7.
    View in: PubMed
    Score: 0.083
  38. Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol. 2005 Sep 10; 23(26):6345-50.
    View in: PubMed
    Score: 0.082
  39. Emerging trends in the clinical use of bortezomib in multiple myeloma. Clin Lymphoma Myeloma. 2005 Sep; 6(2):84-8.
    View in: PubMed
    Score: 0.082
  40. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood. 2005 Nov 01; 106(9):2977-81.
    View in: PubMed
    Score: 0.081
  41. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A. 2005 Jun 14; 102(24):8567-72.
    View in: PubMed
    Score: 0.080
  42. Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene. 2005 Apr 28; 24(19):3121-9.
    View in: PubMed
    Score: 0.080
  43. Proteasome inhibition in the treatment of cancer. . 2005 Feb; 4(2):290-6.
    View in: PubMed
    Score: 0.079
  44. Novel biological therapies for the treatment of multiple myeloma. Best Pract Res Clin Haematol. 2005; 18(4):619-34.
    View in: PubMed
    Score: 0.078
  45. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene. 2004 Nov 18; 23(54):8766-76.
    View in: PubMed
    Score: 0.077
  46. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc. 2004 Jul; 79(7):875-82.
    View in: PubMed
    Score: 0.075
  47. An update of novel therapeutic approaches for multiple myeloma. Curr Treat Options Oncol. 2004 Jun; 5(3):227-38.
    View in: PubMed
    Score: 0.075
  48. Proteasome inhibition in hematologic malignancies. Ann Med. 2004; 36(4):304-14.
    View in: PubMed
    Score: 0.073
  49. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res. 2003 Dec 01; 63(23):8428-36.
    View in: PubMed
    Score: 0.072
  50. Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene. 2003 Nov 27; 22(54):8797-801.
    View in: PubMed
    Score: 0.072
  51. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene. 2003 Nov 20; 22(52):8386-93.
    View in: PubMed
    Score: 0.072
  52. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 2003 Sep-Oct; 10(5):361-9.
    View in: PubMed
    Score: 0.071
  53. Novel therapeutic approaches for multiple myeloma. Immunol Rev. 2003 Aug; 194:164-76.
    View in: PubMed
    Score: 0.071
  54. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003 Jun 26; 348(26):2609-17.
    View in: PubMed
    Score: 0.070
  55. Targeting proteasome inhibition in hematologic malignancies. Rev Clin Exp Hematol. 2003 Jun; 7(2):191-204.
    View in: PubMed
    Score: 0.070
  56. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002 Nov 01; 100(9):3063-7.
    View in: PubMed
    Score: 0.067
  57. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003 Feb 15; 101(4):1530-4.
    View in: PubMed
    Score: 0.067
  58. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood. 2003 Jan 15; 101(2):703-5.
    View in: PubMed
    Score: 0.066
  59. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. . 2002 May; 1(7):539-44.
    View in: PubMed
    Score: 0.065
  60. Thalidomide in multiple myeloma. Biomed Pharmacother. 2002 May; 56(3):115-28.
    View in: PubMed
    Score: 0.065
  61. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002 May 10; 277(19):16639-47.
    View in: PubMed
    Score: 0.064
  62. Thalidomide: emerging role in cancer medicine. Annu Rev Med. 2002; 53:629-57.
    View in: PubMed
    Score: 0.063
  63. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol. 2001 Dec; 28(6):607-12.
    View in: PubMed
    Score: 0.063
  64. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001 Jul 27; 20(33):4519-27.
    View in: PubMed
    Score: 0.062
  65. Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia. 2021 Jul 21.
    View in: PubMed
    Score: 0.061
  66. ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Sci Adv. 2021 Jun; 7(23).
    View in: PubMed
    Score: 0.061
  67. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2021 Sep; 2(5):468-483.
    View in: PubMed
    Score: 0.060
  68. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001 Apr 01; 61(7):3071-6.
    View in: PubMed
    Score: 0.060
  69. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000 Nov 01; 96(9):2943-50.
    View in: PubMed
    Score: 0.058
  70. Correction: Dual Inhibition of Canonical and Noncanonical NF-?B Pathways Demonstrates Significant Antitumor Activities in Multiple Myeloma. Clin Cancer Res. 2019 May 01; 25(9):2938.
    View in: PubMed
    Score: 0.053
  71. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018 09; 32(9):1932-1947.
    View in: PubMed
    Score: 0.049
  72. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol. 2017 12; 179(5):756-771.
    View in: PubMed
    Score: 0.047
  73. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget. 2016 Nov 22; 7(47):77326-77341.
    View in: PubMed
    Score: 0.044
  74. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun. 2016 Jan 05; 7:10258.
    View in: PubMed
    Score: 0.042
  75. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood. 2016 Mar 03; 127(9):1138-50.
    View in: PubMed
    Score: 0.042
  76. Combination of a Selective HSP90a/ß Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS One. 2015; 10(12):e0143847.
    View in: PubMed
    Score: 0.042
  77. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015 Sep; 5(9):972-87.
    View in: PubMed
    Score: 0.040
  78. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015 Oct 15; 21(20):4607-18.
    View in: PubMed
    Score: 0.040
  79. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res. 2014 Aug 15; 74(16):4458-69.
    View in: PubMed
    Score: 0.038
  80. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014 Jun; 20(6):599-606.
    View in: PubMed
    Score: 0.037
  81. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014 Aug; 166(3):401-9.
    View in: PubMed
    Score: 0.037
  82. Clinical translation in multiple myeloma: from bench to bedside. Semin Oncol. 2013 Oct; 40(5):549-53.
    View in: PubMed
    Score: 0.036
  83. Phase transitions in human IgG solutions. J Chem Phys. 2013 Sep 28; 139(12):121904.
    View in: PubMed
    Score: 0.036
  84. Intracellular NAD? depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013 Aug 15; 122(7):1243-55.
    View in: PubMed
    Score: 0.035
  85. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013 Apr 11; 121(15):2975-87.
    View in: PubMed
    Score: 0.034
  86. New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Curr Pharm Des. 2013; 19(4):734-44.
    View in: PubMed
    Score: 0.034
  87. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012 Sep 11; 22(3):345-58.
    View in: PubMed
    Score: 0.033
  88. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012 Oct 25; 120(17):3519-29.
    View in: PubMed
    Score: 0.033
  89. Lenalidomide for the treatment of relapsed and refractory multiple myeloma. Cancer Manag Res. 2012; 4:253-68.
    View in: PubMed
    Score: 0.033
  90. Pathological crystallization of human immunoglobulins. Proc Natl Acad Sci U S A. 2012 Aug 14; 109(33):13359-61.
    View in: PubMed
    Score: 0.033
  91. Dual inhibition of canonical and noncanonical NF-?B pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res. 2012 Sep 01; 18(17):4669-81.
    View in: PubMed
    Score: 0.033
  92. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br J Haematol. 2012 Aug; 158(4):472-80.
    View in: PubMed
    Score: 0.033
  93. Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents. Br J Haematol. 2012 Jun; 157(6):718-31.
    View in: PubMed
    Score: 0.032
  94. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica. 2011 Aug; 96(8):1170-9.
    View in: PubMed
    Score: 0.031
  95. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010 Oct 28; 116(17):3227-37.
    View in: PubMed
    Score: 0.029
  96. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood. 2010 Sep 02; 116(9):1460-8.
    View in: PubMed
    Score: 0.028
  97. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood. 2010 Jun 24; 115(25):5202-13.
    View in: PubMed
    Score: 0.028
  98. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010 May; 149(4):537-49.
    View in: PubMed
    Score: 0.028
  99. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res. 2009 Dec 01; 15(23):7153-60.
    View in: PubMed
    Score: 0.027
  100. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009 Oct 06; 16(4):309-23.
    View in: PubMed
    Score: 0.027
  101. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol. 2009 Dec; 147(5):672-6.
    View in: PubMed
    Score: 0.027
  102. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009 Jun 15; 15(12):4028-37.
    View in: PubMed
    Score: 0.027
  103. Emerging therapies for multiple myeloma. Expert Opin Emerg Drugs. 2009 Mar; 14(1):99-127.
    View in: PubMed
    Score: 0.026
  104. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008 Jul 01; 68(13):5216-25.
    View in: PubMed
    Score: 0.025
  105. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008 Apr 15; 14(8):2387-95.
    View in: PubMed
    Score: 0.025
  106. Fatty acid synthase is a novel therapeutic target in multiple myeloma. Br J Haematol. 2008 May; 141(5):659-71.
    View in: PubMed
    Score: 0.024
  107. Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res. 2008 Feb 01; 14(3):865-74.
    View in: PubMed
    Score: 0.024
  108. The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol. 2007 Dec; 20(4):597-612.
    View in: PubMed
    Score: 0.024
  109. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 2007 Dec; 21(6):1007-34, vii-viii.
    View in: PubMed
    Score: 0.024
  110. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 2008 Feb 01; 111(3):1654-64.
    View in: PubMed
    Score: 0.024
  111. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007 Oct; 139(1):55-63.
    View in: PubMed
    Score: 0.024
  112. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008 Aug 15; 112(4):1329-37.
    View in: PubMed
    Score: 0.024
  113. Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res. 2007 Jul 01; 13(13):3771-5.
    View in: PubMed
    Score: 0.023
  114. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007 Sep 01; 110(5):1656-63.
    View in: PubMed
    Score: 0.023
  115. Novel etodolac analog SDX-308 (CEP-18082) induces cytotoxicity in multiple myeloma cells associated with inhibition of beta-catenin/TCF pathway. Leukemia. 2007 Mar; 21(3):535-40.
    View in: PubMed
    Score: 0.023
  116. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol. 2007 Feb; 136(3):414-23.
    View in: PubMed
    Score: 0.022
  117. Bortezomib as an antitumor agent. Curr Pharm Biotechnol. 2006 Dec; 7(6):441-8.
    View in: PubMed
    Score: 0.022
  118. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007 Feb 01; 109(3):1220-7.
    View in: PubMed
    Score: 0.022
  119. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2007 Apr 05; 26(16):2374-80.
    View in: PubMed
    Score: 0.022
  120. Proteasome inhibition as a new therapeutic principle in hematological malignancies. Curr Drug Targets. 2006 Oct; 7(10):1341-7.
    View in: PubMed
    Score: 0.022
  121. Recent advances in the treatment of Multiple Myeloma. Curr Pharm Biotechnol. 2006 Oct; 7(5):381-93.
    View in: PubMed
    Score: 0.022
  122. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01; 66(13):6675-82.
    View in: PubMed
    Score: 0.022
  123. FQPD, a novel immunomodulatory drug, has significant in vitro activity in multiple myeloma. Br J Haematol. 2006 Mar; 132(6):698-704.
    View in: PubMed
    Score: 0.021
  124. Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol. 2006 Feb; 132(4):385-97.
    View in: PubMed
    Score: 0.021
  125. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006 Jan 01; 66(1):184-91.
    View in: PubMed
    Score: 0.021
  126. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15; 65(24):11712-20.
    View in: PubMed
    Score: 0.021
  127. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005 Nov; 8(5):407-19.
    View in: PubMed
    Score: 0.021
  128. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006 Feb 01; 107(3):1092-100.
    View in: PubMed
    Score: 0.021
  129. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005 Sep 15; 65(18):8350-8.
    View in: PubMed
    Score: 0.020
  130. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res. 2005 Aug 15; 65(16):7478-84.
    View in: PubMed
    Score: 0.020
  131. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005 Jul 01; 65(13):5898-906.
    View in: PubMed
    Score: 0.020
  132. Antimyeloma activity of two novel N-substituted and tetraflourinated thalidomide analogs. Leukemia. 2005 Jul; 19(7):1253-61.
    View in: PubMed
    Score: 0.020
  133. Proteasome inhibition as a therapeutic strategy for hematologic malignancies. Expert Rev Anticancer Ther. 2005 Jun; 5(3):465-76.
    View in: PubMed
    Score: 0.020
  134. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood. 2005 Sep 01; 106(5):1794-800.
    View in: PubMed
    Score: 0.020
  135. Proteasome inhibitor therapy in multiple myeloma. . 2005 Apr; 4(4):686-92.
    View in: PubMed
    Score: 0.020
  136. Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood. 2005 Jun 01; 105(11):4470-6.
    View in: PubMed
    Score: 0.020
  137. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol. 2005 Jan 20; 23(3):630-9.
    View in: PubMed
    Score: 0.020
  138. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005 Jan; 128(2):192-203.
    View in: PubMed
    Score: 0.020
  139. Proteasome inhibitors as therapeutics. Essays Biochem. 2005; 41:205-18.
    View in: PubMed
    Score: 0.020
  140. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res. 2004 Dec 01; 64(23):8746-53.
    View in: PubMed
    Score: 0.019
  141. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res. 2004 Nov 15; 10(22):7540-6.
    View in: PubMed
    Score: 0.019
  142. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004 Oct 15; 64(20):7500-6.
    View in: PubMed
    Score: 0.019
  143. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004 Dec 15; 104(13):4188-93.
    View in: PubMed
    Score: 0.019
  144. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004 Nov 01; 104(9):2886-92.
    View in: PubMed
    Score: 0.019
  145. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood. 2004 Oct 15; 104(8):2458-66.
    View in: PubMed
    Score: 0.019
  146. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004 May; 125(3):343-52.
    View in: PubMed
    Score: 0.019
  147. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004 Apr 15; 64(8):2846-52.
    View in: PubMed
    Score: 0.019
  148. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood. 2004 Apr 15; 103(8):3158-66.
    View in: PubMed
    Score: 0.018
  149. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004 May 01; 103(9):3474-9.
    View in: PubMed
    Score: 0.018
  150. Effects of oligonucleotide N3'-->P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 2003 Oct 01; 63(19):6187-94.
    View in: PubMed
    Score: 0.018
  151. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004 Mar 01; 103(5):1787-90.
    View in: PubMed
    Score: 0.018
  152. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res. 2003 Sep 15; 63(18):5850-8.
    View in: PubMed
    Score: 0.018
  153. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood. 2003 Oct 01; 102(7):2615-22.
    View in: PubMed
    Score: 0.018
  154. Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol. 2003 May; 121(4):592-6.
    View in: PubMed
    Score: 0.017
  155. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003 Aug 15; 102(4):1435-42.
    View in: PubMed
    Score: 0.017
  156. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003 May 15; 101(10):4055-62.
    View in: PubMed
    Score: 0.017
  157. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 2003 Jan 01; 63(1):18-21.
    View in: PubMed
    Score: 0.017
  158. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood. 2003 May 01; 101(9):3606-14.
    View in: PubMed
    Score: 0.017
  159. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003 Mar 15; 101(6):2377-80.
    View in: PubMed
    Score: 0.017
  160. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002 Oct 29; 99(22):14374-9.
    View in: PubMed
    Score: 0.017
  161. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood. 2002 Sep 15; 100(6):2187-94.
    View in: PubMed
    Score: 0.017
  162. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 2002 Sep 01; 62(17):4996-5000.
    View in: PubMed
    Score: 0.017
  163. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2002 Sep 01; 62(17):5019-26.
    View in: PubMed
    Score: 0.017
  164. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002 Aug 22; 21(37):5673-83.
    View in: PubMed
    Score: 0.017
  165. Novel biologically based therapies for multiple myeloma. Int J Hematol. 2002 Aug; 76 Suppl 1:340-1.
    View in: PubMed
    Score: 0.016
  166. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. . 2002 Aug; 1(10):851-60.
    View in: PubMed
    Score: 0.016
  167. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 2002 Jul 01; 62(13):3876-82.
    View in: PubMed
    Score: 0.016
  168. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002 Jun 15; 99(12):4525-30.
    View in: PubMed
    Score: 0.016
  169. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002 Jun 01; 99(11):4079-86.
    View in: PubMed
    Score: 0.016
  170. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene. 2002 Feb 21; 21(9):1346-58.
    View in: PubMed
    Score: 0.016
  171. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001 Dec; 15(12):1950-61.
    View in: PubMed
    Score: 0.016
  172. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood. 2001 Aug 01; 98(3):795-804.
    View in: PubMed
    Score: 0.015
  173. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001 Jul 15; 98(2):428-35.
    View in: PubMed
    Score: 0.015
  174. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001 Jul 01; 98(1):210-6.
    View in: PubMed
    Score: 0.015
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.