Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Yu-Tzu Tai, Ph.D.

Co-Author

This page shows the publications co-authored by Yu-Tzu Tai and Dharminder Chauhan.
Connection Strength

1.724
  1. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010 May; 149(4):537-49.
    View in: PubMed
    Score: 0.108
  2. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009 Oct 06; 16(4):309-23.
    View in: PubMed
    Score: 0.105
  3. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007 Sep 01; 110(5):1656-63.
    View in: PubMed
    Score: 0.089
  4. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01; 66(13):6675-82.
    View in: PubMed
    Score: 0.084
  5. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15; 65(24):11712-20.
    View in: PubMed
    Score: 0.080
  6. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004 Apr 15; 64(8):2846-52.
    View in: PubMed
    Score: 0.072
  7. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood. 2004 Apr 15; 103(8):3158-66.
    View in: PubMed
    Score: 0.070
  8. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res. 2003 Sep 15; 63(18):5850-8.
    View in: PubMed
    Score: 0.069
  9. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood. 2003 Nov 01; 102(9):3379-86.
    View in: PubMed
    Score: 0.068
  10. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2021 09; 2(5):468-483.
    View in: PubMed
    Score: 0.058
  11. Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia. 2020 02; 34(2):567-577.
    View in: PubMed
    Score: 0.052
  12. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clin Cancer Res. 2016 Dec 15; 22(24):6099-6109.
    View in: PubMed
    Score: 0.042
  13. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood. 2016 Mar 03; 127(9):1138-50.
    View in: PubMed
    Score: 0.040
  14. Combination of a Selective HSP90a/ß Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS One. 2015; 10(12):e0143847.
    View in: PubMed
    Score: 0.040
  15. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood. 2014 Jan 30; 123(5):706-16.
    View in: PubMed
    Score: 0.035
  16. Intracellular NAD? depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013 Aug 15; 122(7):1243-55.
    View in: PubMed
    Score: 0.034
  17. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood. 2012 Nov 08; 120(19):3958-67.
    View in: PubMed
    Score: 0.032
  18. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012 Oct 25; 120(17):3519-29.
    View in: PubMed
    Score: 0.032
  19. The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. Br J Haematol. 2011 Nov; 155(4):438-48.
    View in: PubMed
    Score: 0.030
  20. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009 Jun 15; 69(12):5082-90.
    View in: PubMed
    Score: 0.026
  21. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009 Jul 09; 114(2):371-9.
    View in: PubMed
    Score: 0.025
  22. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther. 2009 Jan; 8(1):26-35.
    View in: PubMed
    Score: 0.025
  23. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007 Oct 01; 13(19):5903-9.
    View in: PubMed
    Score: 0.023
  24. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol. 2007 Sep; 138(6):783-91.
    View in: PubMed
    Score: 0.023
  25. Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol. 2007 Jul; 35(7):1038-46.
    View in: PubMed
    Score: 0.022
  26. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007 Feb 15; 67(4):1680-8.
    View in: PubMed
    Score: 0.022
  27. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A. 2006 Dec 19; 103(51):19478-83.
    View in: PubMed
    Score: 0.022
  28. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood. 2007 Feb 15; 109(4):1669-77.
    View in: PubMed
    Score: 0.021
  29. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006 Jul; 134(2):145-56.
    View in: PubMed
    Score: 0.021
  30. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006 Nov 15; 108(10):3441-9.
    View in: PubMed
    Score: 0.021
  31. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene. 2005 Sep 01; 24(38):5888-96.
    View in: PubMed
    Score: 0.020
  32. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res. 2005 Aug 15; 65(16):7478-84.
    View in: PubMed
    Score: 0.020
  33. Perspectives for combination therapy to overcome drug-resistant multiple myeloma. Drug Resist Updat. 2005 Aug; 8(4):205-18.
    View in: PubMed
    Score: 0.020
  34. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood. 2005 Jul 15; 106(2):706-12.
    View in: PubMed
    Score: 0.019
  35. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res. 2004 Dec 01; 64(23):8746-53.
    View in: PubMed
    Score: 0.019
  36. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene. 2004 Nov 18; 23(54):8766-76.
    View in: PubMed
    Score: 0.019
  37. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004 Oct 15; 64(20):7500-6.
    View in: PubMed
    Score: 0.019
  38. Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo. Blood. 2005 Jan 01; 105(1):350-7.
    View in: PubMed
    Score: 0.018
  39. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004 May; 125(3):343-52.
    View in: PubMed
    Score: 0.018
  40. Critical role for hematopoietic cell kinase (Hck)-mediated phosphorylation of Gab1 and Gab2 docking proteins in interleukin 6-induced proliferation and survival of multiple myeloma cells. J Biol Chem. 2004 May 14; 279(20):21658-65.
    View in: PubMed
    Score: 0.018
  41. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004 May 01; 103(9):3474-9.
    View in: PubMed
    Score: 0.017
  42. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood. 2003 Oct 01; 102(7):2615-22.
    View in: PubMed
    Score: 0.017
  43. Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol. 2003 May; 121(4):592-6.
    View in: PubMed
    Score: 0.017
  44. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 2003 Jan 01; 63(1):18-21.
    View in: PubMed
    Score: 0.016
  45. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003 Feb 21; 278(8):5794-801.
    View in: PubMed
    Score: 0.016
  46. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003 Mar 15; 101(6):2377-80.
    View in: PubMed
    Score: 0.016
  47. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 2002 Jul 01; 62(13):3876-82.
    View in: PubMed
    Score: 0.016
  48. beta-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp Hematol. 2002 Jul; 30(7):711-20.
    View in: PubMed
    Score: 0.016
  49. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem. 2002 Mar 08; 277(10):7875-81.
    View in: PubMed
    Score: 0.015
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.