Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

Yu-Tzu Tai, Ph.D.

Co-Author

This page shows the publications co-authored by Yu-Tzu Tai and Mariateresa Fulciniti.
Connection Strength

1.590
  1. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood. 2012 Aug 30; 120(9):1877-87.
    View in: PubMed
    Score: 0.130
  2. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res. 2011 Oct 15; 17(20):6500-9.
    View in: PubMed
    Score: 0.122
  3. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010 May; 149(4):537-49.
    View in: PubMed
    Score: 0.111
  4. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res. 2009 Dec 01; 15(23):7144-52.
    View in: PubMed
    Score: 0.109
  5. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009 Jul 09; 114(2):371-9.
    View in: PubMed
    Score: 0.104
  6. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells. Blood. 2009 Apr 30; 113(18):4309-18.
    View in: PubMed
    Score: 0.103
  7. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007 Sep 01; 110(5):1656-63.
    View in: PubMed
    Score: 0.091
  8. Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma. Cancers (Basel). 2021 Jun 25; 13(13).
    View in: PubMed
    Score: 0.061
  9. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021 02 08; 12(1):868.
    View in: PubMed
    Score: 0.059
  10. YWHAE/14-3-3e expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood. 2020 07 23; 136(4):468-479.
    View in: PubMed
    Score: 0.057
  11. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019 08 23; 10(1):3835.
    View in: PubMed
    Score: 0.053
  12. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018 08 22; 9(1):3363.
    View in: PubMed
    Score: 0.050
  13. Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat Commun. 2018 04 30; 9(1):1716.
    View in: PubMed
    Score: 0.049
  14. Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia. 2018 12; 32(12):2626-2635.
    View in: PubMed
    Score: 0.048
  15. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood. 2016 Mar 03; 127(9):1138-50.
    View in: PubMed
    Score: 0.041
  16. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015 Jun; 21(6):572-80.
    View in: PubMed
    Score: 0.040
  17. Differential and limited expression of mutant alleles in multiple myeloma. Blood. 2014 Nov 13; 124(20):3110-7.
    View in: PubMed
    Score: 0.038
  18. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014; 5:2997.
    View in: PubMed
    Score: 0.036
  19. Intracellular NAD? depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013 Aug 15; 122(7):1243-55.
    View in: PubMed
    Score: 0.035
  20. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012 Oct 25; 120(17):3519-29.
    View in: PubMed
    Score: 0.033
  21. Blockade of XBP1 splicing by inhibition of IRE1a is a promising therapeutic option in multiple myeloma. Blood. 2012 Jun 14; 119(24):5772-81.
    View in: PubMed
    Score: 0.032
  22. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics. 2012 Mar-Apr; 9(2):55-66.
    View in: PubMed
    Score: 0.032
  23. The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. Br J Haematol. 2011 Nov; 155(4):438-48.
    View in: PubMed
    Score: 0.031
  24. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010 Jul 01; 115(26):5385-92.
    View in: PubMed
    Score: 0.028
  25. The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood. 2010 Apr 08; 115(14):2827-34.
    View in: PubMed
    Score: 0.027
  26. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009 Jun 15; 15(12):4028-37.
    View in: PubMed
    Score: 0.026
  27. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007 Oct 01; 13(19):5903-9.
    View in: PubMed
    Score: 0.023
  28. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood. 2006 Oct 15; 108(8):2804-10.
    View in: PubMed
    Score: 0.021
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.