Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

John J. Rosowski, Ph.D.

Concepts

This page shows the publications John Rosowski has written about Vibration.
Connection Strength

3.193
  1. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography. J Biomed Opt. 2014 Sep; 19(9):96001.
    View in: PubMed
    Score: 0.492
  2. Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear. 2008 Jan; 29(1):3-19.
    View in: PubMed
    Score: 0.310
  3. Measurements of glottal structure dynamics. J Acoust Soc Am. 2005 Mar; 117(3 Pt 1):1373-85.
    View in: PubMed
    Score: 0.255
  4. A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res. 2004 Jan; 187(1-2):85-104.
    View in: PubMed
    Score: 0.235
  5. Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol Neurotol. 2003 Mar; 24(2):165-75.
    View in: PubMed
    Score: 0.222
  6. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch. Hear Res. 2016 10; 340:144-152.
    View in: PubMed
    Score: 0.136
  7. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results. Hear Res. 2016 10; 340:15-24.
    View in: PubMed
    Score: 0.136
  8. In-plane and out-of-plane motions of the human tympanic membrane. J Acoust Soc Am. 2016 Jan; 139(1):104-17.
    View in: PubMed
    Score: 0.135
  9. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography. J Biomed Opt. 2015 May; 20(5):051028.
    View in: PubMed
    Score: 0.129
  10. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla. J Acoust Soc Am. 2013 Oct; 134(4):2852-65.
    View in: PubMed
    Score: 0.116
  11. Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane. Hear Res. 2013 Jul; 301:44-52.
    View in: PubMed
    Score: 0.109
  12. Békésy's contributions to our present understanding of sound conduction to the inner ear. Hear Res. 2012 Nov; 293(1-2):21-30.
    View in: PubMed
    Score: 0.105
  13. Comparison of umbo velocity in air- and bone-conduction. Hear Res. 2012 Aug; 290(1-2):83-90.
    View in: PubMed
    Score: 0.105
  14. New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol. 2011 Dec; 32(9):1559-67.
    View in: PubMed
    Score: 0.102
  15. Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res. 2010 May; 263(1-2):66-77.
    View in: PubMed
    Score: 0.089
  16. Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry. Otol Neurotol. 2009 Dec; 30(8):1209-14.
    View in: PubMed
    Score: 0.089
  17. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res. 2010 May; 263(1-2):78-84.
    View in: PubMed
    Score: 0.088
  18. Measurement of conductive hearing loss in mice. Hear Res. 2010 May; 263(1-2):93-103.
    View in: PubMed
    Score: 0.088
  19. Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane. J Biomed Opt. 2018 09; 24(3):1-12.
    View in: PubMed
    Score: 0.041
  20. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res. 2018 09; 367:17-31.
    View in: PubMed
    Score: 0.040
  21. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res. 2016 10; 340:191-203.
    View in: PubMed
    Score: 0.034
  22. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Hear Res. 2013 Oct; 304:49-56.
    View in: PubMed
    Score: 0.028
  23. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am. 2013 Feb; 133(2):918-37.
    View in: PubMed
    Score: 0.028
  24. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation. Scanning. 2011 Sep-Oct; 33(5):342-52.
    View in: PubMed
    Score: 0.025
  25. Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt. 2009 May-Jun; 14(3):034023.
    View in: PubMed
    Score: 0.021
  26. Active control of ultrasonic hearing in frogs. Proc Natl Acad Sci U S A. 2008 Aug 05; 105(31):11014-9.
    View in: PubMed
    Score: 0.020
  27. Mechanisms of hearing loss resulting from middle-ear fluid. Hear Res. 2004 Sep; 195(1-2):103-30.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.