Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

John J. Rosowski, Ph.D.

Concepts

This page shows the publications John Rosowski has written about Motion.
Connection Strength

1.487
  1. Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane. Hear Res. 2013 Jul; 301:44-52.
    View in: PubMed
    Score: 0.391
  2. Tympanic membrane surface motions in forward and reverse middle ear transmissions. J Acoust Soc Am. 2019 01; 145(1):272.
    View in: PubMed
    Score: 0.149
  3. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear. Hear Res. 2018 03; 360:3-13.
    View in: PubMed
    Score: 0.138
  4. Chinchilla middle ear transmission matrix model and middle-ear flexibility. J Acoust Soc Am. 2017 05; 141(5):3274.
    View in: PubMed
    Score: 0.133
  5. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results. Hear Res. 2016 10; 340:15-24.
    View in: PubMed
    Score: 0.122
  6. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography. J Biomed Opt. 2015 May; 20(5):051028.
    View in: PubMed
    Score: 0.115
  7. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla. J Acoust Soc Am. 2013 Oct; 134(4):2852-65.
    View in: PubMed
    Score: 0.103
  8. Evidence of inner ear contribution in bone conduction in chinchilla. Hear Res. 2013 Jul; 301:66-71.
    View in: PubMed
    Score: 0.098
  9. Comparison of umbo velocity in air- and bone-conduction. Hear Res. 2012 Aug; 290(1-2):83-90.
    View in: PubMed
    Score: 0.094
  10. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res. 2018 09; 367:17-31.
    View in: PubMed
    Score: 0.036
  11. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations. Hear Res. 2016 11; 341:19-30.
    View in: PubMed
    Score: 0.031
  12. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res. 2016 10; 340:191-203.
    View in: PubMed
    Score: 0.031
  13. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am. 2013 Feb; 133(2):918-37.
    View in: PubMed
    Score: 0.025
  14. Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am. 2001 Sep; 110(3 Pt 1):1432-44.
    View in: PubMed
    Score: 0.011
  15. Acoustic responses of the human middle ear. Hear Res. 2000 Dec; 150(1-2):43-69.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.