Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Ralph Weissleder, Ph.D., M.D.

Co-Author

This page shows the publications co-authored by Ralph Weissleder and Peter Libby.
Connection Strength

4.411
  1. The vascular biology of atherosclerosis and imaging targets. J Nucl Med. 2010 May 01; 51 Suppl 1:33S-37S.
    View in: PubMed
    Score: 0.451
  2. Molecular imaging of atherosclerosis: a progress report. Tex Heart Inst J. 2010; 37(3):324-7.
    View in: PubMed
    Score: 0.442
  3. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med. 2017 Dec; 23(12):1481-1487.
    View in: PubMed
    Score: 0.190
  4. Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research: National Heart, Lung, and Blood Institute Working Group. JACC Basic Transl Sci. 2016 Jan-Feb; 1(1-2):73-86.
    View in: PubMed
    Score: 0.168
  5. Imaging Granzyme B Activity Assesses Immune-Mediated Myocarditis. Circ Res. 2015 Aug 28; 117(6):502-512.
    View in: PubMed
    Score: 0.162
  6. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging. 2014 Nov; 7(6):920-9.
    View in: PubMed
    Score: 0.153
  7. Report of the National Heart, Lung, and Blood Institute working group on the translation of cardiovascular molecular imaging. Circulation. 2011 May 17; 123(19):2157-63.
    View in: PubMed
    Score: 0.122
  8. Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb Haemost. 2011 May; 105(5):828-36.
    View in: PubMed
    Score: 0.119
  9. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging. 2009 Oct; 2(10):1213-22.
    View in: PubMed
    Score: 0.109
  10. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 2009 Jul; 29(7):1017-24.
    View in: PubMed
    Score: 0.105
  11. Molecular imaging of innate immune cell function in transplant rejection. Circulation. 2009 Apr 14; 119(14):1925-32.
    View in: PubMed
    Score: 0.105
  12. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009 Apr 07; 119(13):1785-94.
    View in: PubMed
    Score: 0.105
  13. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008 Oct 28; 118(18):1802-9.
    View in: PubMed
    Score: 0.102
  14. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008 Mar 04; 117(9):1153-60.
    View in: PubMed
    Score: 0.097
  15. Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation. 2008 Jan 22; 117(3):388-95.
    View in: PubMed
    Score: 0.096
  16. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008 Jan 22; 117(3):379-87.
    View in: PubMed
    Score: 0.096
  17. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol. 2007 Nov; 14(11):1221-31.
    View in: PubMed
    Score: 0.095
  18. Molecular imaging of cardiovascular disease. Circulation. 2007 Aug 28; 116(9):1052-61.
    View in: PubMed
    Score: 0.094
  19. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007 May 01; 115(17):2292-8.
    View in: PubMed
    Score: 0.091
  20. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006 Oct 03; 114(14):1504-11.
    View in: PubMed
    Score: 0.088
  21. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006 Jul 04; 114(1):55-62.
    View in: PubMed
    Score: 0.087
  22. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci U S A. 2006 Jul 05; 103(27):10340-10345.
    View in: PubMed
    Score: 0.087
  23. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol. 2006 Apr 04; 47(7):1328-38.
    View in: PubMed
    Score: 0.085
  24. Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity. 2019 11 19; 51(5):899-914.e7.
    View in: PubMed
    Score: 0.055
  25. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019 02; 566(7742):115-119.
    View in: PubMed
    Score: 0.052
  26. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J Exp Med. 2017 Nov 06; 214(11):3293-3310.
    View in: PubMed
    Score: 0.047
  27. Macrophages Facilitate Electrical Conduction in the Heart. Cell. 2017 04 20; 169(3):510-522.e20.
    View in: PubMed
    Score: 0.046
  28. Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circ Res. 2016 Sep 16; 119(7):853-64.
    View in: PubMed
    Score: 0.044
  29. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 2016 06 08; 8(342):342ra80.
    View in: PubMed
    Score: 0.043
  30. Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circ Res. 2015 Oct 23; 117(10):835-45.
    View in: PubMed
    Score: 0.041
  31. Targeting Interleukin-1ß Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation. 2015 Nov 17; 132(20):1880-90.
    View in: PubMed
    Score: 0.041
  32. Lp-PLA2 Antagonizes Left Ventricular Healing After Myocardial Infarction by Impairing the Appearance of Reparative Macrophages. Circ Heart Fail. 2015 Sep; 8(5):980-7.
    View in: PubMed
    Score: 0.041
  33. Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells. Cell Stem Cell. 2015 May 07; 16(5):477-87.
    View in: PubMed
    Score: 0.040
  34. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J Exp Med. 2015 Apr 06; 212(4):497-512.
    View in: PubMed
    Score: 0.040
  35. Statins improve the resolution of established murine venous thrombosis: reductions in thrombus burden and vein wall scarring. PLoS One. 2015; 10(2):e0116621.
    View in: PubMed
    Score: 0.039
  36. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014 Jul; 20(7):754-758.
    View in: PubMed
    Score: 0.038
  37. Silencing of CCR2 in myocarditis. Eur Heart J. 2015 Jun 14; 36(23):1478-88.
    View in: PubMed
    Score: 0.038
  38. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014 May 09; 114(10):1611-22.
    View in: PubMed
    Score: 0.037
  39. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation. 2014 Apr 22; 129(16):1677-87.
    View in: PubMed
    Score: 0.037
  40. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014 Apr 22; 63(15):1556-66.
    View in: PubMed
    Score: 0.036
  41. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013 Sep; 19(9):1166-72.
    View in: PubMed
    Score: 0.035
  42. Nanoparticle PET-CT detects rejection and immunomodulation in cardiac allografts. Circ Cardiovasc Imaging. 2013 Jul; 6(4):568-73.
    View in: PubMed
    Score: 0.035
  43. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013 Mar 01; 112(5):755-61.
    View in: PubMed
    Score: 0.034
  44. Myocardial infarction accelerates atherosclerosis. Nature. 2012 Jul 19; 487(7407):325-9.
    View in: PubMed
    Score: 0.033
  45. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012 Jan 16; 209(1):123-37.
    View in: PubMed
    Score: 0.032
  46. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation. 2012 Jan 17; 125(2):364-74.
    View in: PubMed
    Score: 0.032
  47. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011 Oct 09; 29(11):1005-10.
    View in: PubMed
    Score: 0.031
  48. Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol. 2011 Jun 21; 57(25):2516-26.
    View in: PubMed
    Score: 0.031
  49. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011 May 25; 3(84):84ra45.
    View in: PubMed
    Score: 0.030
  50. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010 Oct 26; 122(17):1707-15.
    View in: PubMed
    Score: 0.029
  51. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010 Apr 13; 55(15):1629-38.
    View in: PubMed
    Score: 0.028
  52. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009 Jul 31; 325(5940):612-6.
    View in: PubMed
    Score: 0.027
  53. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One. 2009 May 22; 4(5):e5663.
    View in: PubMed
    Score: 0.026
  54. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007 Nov 26; 204(12):3037-47.
    View in: PubMed
    Score: 0.024
  55. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007 Jan; 117(1):195-205.
    View in: PubMed
    Score: 0.022
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.