Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Harald Paganetti, Ph.D.

Co-Author

This page shows the publications co-authored by Harald Paganetti and Jan Schuemann.
Connection Strength

14.333
  1. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy. Med Phys. 2015 Jun; 42(6):3362.
    View in: PubMed
    Score: 0.647
  2. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy. Int J Radiat Oncol Biol Phys. 2015 Aug 01; 92(5):1157-1164.
    View in: PubMed
    Score: 0.640
  3. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy. Phys Med Biol. 2014 Aug 07; 59(15):4007-31.
    View in: PubMed
    Score: 0.607
  4. TH-A-19A-02: Expanding TOPAS Towards Biological Modeling. Med Phys. 2014 Jun; 41(6):533.
    View in: PubMed
    Score: 0.604
  5. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations. Med Phys. 2014 Jun; 41(6):534.
    View in: PubMed
    Score: 0.604
  6. SU-E-T-404: Quantification of Proton Dose Enhancement Resulting From Gold Nanoparticles. Med Phys. 2013 Jun; 40(6Part17):297.
    View in: PubMed
    Score: 0.563
  7. SU-E-T-451: Patient and Site-Specific Assessment of the Value of Routine Monte Carlo Dose Calculation in Proton Therapy. Med Phys. 2013 Jun; 40(6Part17):309.
    View in: PubMed
    Score: 0.563
  8. SU-E-T-500: Pencil-Beam versus Monte Carlo Based Dose Calculation for Proton Therapy Patients with Complex Geometries. Clinical Use of the TOPAS Monte Carlo System. Med Phys. 2012 Jun; 39(6Part18):3820.
    View in: PubMed
    Score: 0.525
  9. The relation between microdosimetry and induction of direct damage to DNA by alpha particles. Phys Med Biol. 2021 Jul 30; 66(15).
    View in: PubMed
    Score: 0.248
  10. Brain Necrosis in Adult Patients After Proton Therapy: Is There Evidence for Dependency on Linear Energy Transfer? Int J Radiat Oncol Biol Phys. 2021 01 01; 109(1):109-119.
    View in: PubMed
    Score: 0.233
  11. Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiat Res. 2020 07 08; 194(1):9-21.
    View in: PubMed
    Score: 0.230
  12. A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio. Phys Med Biol. 2020 04 23; 65(8):085015.
    View in: PubMed
    Score: 0.227
  13. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Med. 2020 Apr; 72:114-121.
    View in: PubMed
    Score: 0.226
  14. End-of-Range Radiobiological Effect on Rib Fractures in Patients Receiving Proton Therapy for Breast Cancer. Int J Radiat Oncol Biol Phys. 2020 07 01; 107(3):449-454.
    View in: PubMed
    Score: 0.226
  15. Impact of uncertainties in range and RBE on small field proton therapy. Phys Med Biol. 2019 10 10; 64(20):205005.
    View in: PubMed
    Score: 0.219
  16. The microdosimetric extension in TOPAS: development and comparison with published data. Phys Med Biol. 2019 07 11; 64(14):145004.
    View in: PubMed
    Score: 0.215
  17. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat Res. 2019 02; 191(2):125-138.
    View in: PubMed
    Score: 0.207
  18. A New Standard DNA Damage (SDD) Data Format. Radiat Res. 2019 01; 191(1):76-92.
    View in: PubMed
    Score: 0.205
  19. Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Phys Med Biol. 2018 09 06; 63(17):175018.
    View in: PubMed
    Score: 0.203
  20. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification. J Appl Clin Med Phys. 2017 Nov; 18(6):200-205.
    View in: PubMed
    Score: 0.191
  21. Correction: Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale. 2017 08 10; 9(31):11338.
    View in: PubMed
    Score: 0.188
  22. Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale. 2017 May 11; 9(18):5843-5853.
    View in: PubMed
    Score: 0.185
  23. Comparing stochastic proton interactions simulated using TOPAS-nBio to experimental data from fluorescent nuclear track detectors. Phys Med Biol. 2017 04 21; 62(8):3237-3249.
    View in: PubMed
    Score: 0.184
  24. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Phys Med. 2017 Jan; 33:207-215.
    View in: PubMed
    Score: 0.180
  25. Limitations of analytical dose calculations for small field proton radiosurgery. Phys Med Biol. 2017 01 07; 62(1):246-257.
    View in: PubMed
    Score: 0.180
  26. WE-H-BRA-07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles. Med Phys. 2016 Jun; 43(6):3844.
    View in: PubMed
    Score: 0.173
  27. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors. Med Phys. 2016 Jun; 43(6):3870-3871.
    View in: PubMed
    Score: 0.173
  28. SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study. Med Phys. 2016 Jun; 43(6):3498.
    View in: PubMed
    Score: 0.173
  29. SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy. Med Phys. 2016 Jun; 43(6):3493-3494.
    View in: PubMed
    Score: 0.173
  30. WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma. Med Phys. 2016 Jun; 43(6):3805.
    View in: PubMed
    Score: 0.173
  31. WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio. Med Phys. 2016 Jun; 43(6):3843.
    View in: PubMed
    Score: 0.173
  32. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning. Phys Med Biol. 2016 Jan 07; 61(1):12-22.
    View in: PubMed
    Score: 0.167
  33. Automated Monte Carlo Simulation of Proton Therapy Treatment Plans. Technol Cancer Res Treat. 2016 12; 15(6):NP35-NP46.
    View in: PubMed
    Score: 0.167
  34. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015 Nov 07; 60(21):8399-416.
    View in: PubMed
    Score: 0.166
  35. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Med Phys. 2015 Oct; 42(10):5890-902.
    View in: PubMed
    Score: 0.165
  36. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Phys Med Biol. 2015 Jul 07; 60(13):5053-70.
    View in: PubMed
    Score: 0.162
  37. SU-E-T-518: Investigation of Gold Nanoparticle Radiosensitization for Carbon Ion Therapy. Med Phys. 2015 Jun; 42(6):3454.
    View in: PubMed
    Score: 0.162
  38. SU-E-T-524: In-Vivo Diode Dosimetry Proton Therapy Range Verification Validation Study for Pediatric CSI. Med Phys. 2015 Jun; 42(6):3455.
    View in: PubMed
    Score: 0.162
  39. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures. Med Phys. 2015 Jun; 42(6):3466.
    View in: PubMed
    Score: 0.162
  40. SU-E-T-769: T-Test Based Prior Error Estimate and Stopping Criterion for Monte Carlo Dose Calculation in Proton Therapy. Med Phys. 2015 Jun; 42(6):3514.
    View in: PubMed
    Score: 0.162
  41. SU-F-BRD-13: A Phenomenological Relative Biological Effectiveness (RBE) Model for Proton Therapy Based On All Published in Vitro Cell Survival Data. Med Phys. 2015 Jun; 42(6):3528.
    View in: PubMed
    Score: 0.162
  42. TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy. Med Phys. 2015 Jun; 42(6):3644.
    View in: PubMed
    Score: 0.162
  43. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys Med Biol. 2015 May 21; 60(10):4149-68.
    View in: PubMed
    Score: 0.161
  44. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study. Phys Med Biol. 2015 Mar 21; 60(6):2257-69.
    View in: PubMed
    Score: 0.159
  45. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014 Dec 21; 59(24):7675-89.
    View in: PubMed
    Score: 0.157
  46. Dosimetric feasibility of real-time MRI-guided proton therapy. Med Phys. 2014 Nov; 41(11):111713.
    View in: PubMed
    Score: 0.155
  47. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations. Med Phys. 2014 Jun; 41(6):495.
    View in: PubMed
    Score: 0.151
  48. WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation. Med Phys. 2014 Jun; 41(6):517.
    View in: PubMed
    Score: 0.151
  49. TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study. Med Phys. 2014 Jun; 41(6):535.
    View in: PubMed
    Score: 0.151
  50. WE-G-BRE-02: Biological Modeling of Gold Nanoparticle Radiosensitization for Proton Therapy. Med Phys. 2014 Jun; 41(6):517.
    View in: PubMed
    Score: 0.151
  51. SU-E-T-180: Fano Cavity Test of Proton Transport in Monte Carlo Codes Running On GPU and Xeon Phi. Med Phys. 2014 Jun; 41(6):264.
    View in: PubMed
    Score: 0.151
  52. An algorithm to assess the need for clinical Monte Carlo dose calculation for small proton therapy fields based on quantification of tissue heterogeneity. Med Phys. 2013 Aug; 40(8):081704.
    View in: PubMed
    Score: 0.142
  53. WE-G-500-04: A Novel Technique for In-Vivo and Real-Time Range Verification Based On the Characteristic Prompt Gamma Time-Structure of Passively Modulated Proton Beams. Med Phys. 2013 Jun; 40(6Part30):503.
    View in: PubMed
    Score: 0.141
  54. WE-C-108-07: Optimal Parameters for Variance Reduction in Monte Carlo Simulations for Proton Therapy. Med Phys. 2013 Jun; 40(6Part28):475.
    View in: PubMed
    Score: 0.141
  55. SU-E-T-473: Performance Assessment of the TOPAS Tool for Particle Simulation for Proton Therapy Applications. Med Phys. 2012 Jun; 39(6Part17):3814.
    View in: PubMed
    Score: 0.131
  56. SU-E-T-470: Comparison of Proton Treatment Planning and Monte Carlo Calculation Using TOPAS for Liver Cancer. Med Phys. 2012 Jun; 39(6Part17):3813.
    View in: PubMed
    Score: 0.131
  57. MO-F-BRB-03: A Method to Assess the Need for Clinical Monte Carlo Dose Calculations for Small Proton Therapy Fields. Med Phys. 2012 Jun; 39(6Part21):3874.
    View in: PubMed
    Score: 0.131
  58. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4. Phys Med Biol. 2012 Jun 07; 57(11):3281-93.
    View in: PubMed
    Score: 0.131
  59. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012 Mar 07; 57(5):1159-72.
    View in: PubMed
    Score: 0.129
  60. TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation. Phys Med Biol. 2021 Sep 03; 66(17).
    View in: PubMed
    Score: 0.062
  61. Monte Carlo methods for device simulations in radiation therapy. Phys Med Biol. 2021 Aug 12.
    View in: PubMed
    Score: 0.062
  62. Monte Carlo Processing on a Chip (MCoaC)-preliminary experiments toward the realization of optimal-hardware for TOPAS/Geant4 to drive discovery. Phys Med. 2019 Aug; 64:166-173.
    View in: PubMed
    Score: 0.054
  63. Comparing 2 Monte Carlo Systems in Use for Proton Therapy Research. Int J Part Ther. 2019; 6(1):18-27.
    View in: PubMed
    Score: 0.053
  64. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Phys Med Biol. 2018 05 17; 63(10):105014.
    View in: PubMed
    Score: 0.050
  65. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep. 2017 09 07; 7(1):10790.
    View in: PubMed
    Score: 0.047
  66. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations. Phys Med Biol. 2017 Jul 06; 62(15):5908-5925.
    View in: PubMed
    Score: 0.047
  67. Recent developments and comprehensive evaluations of a GPU-based Monte Carlo package for proton therapy. Phys Med Biol. 2016 10 21; 61(20):7347-7362.
    View in: PubMed
    Score: 0.044
  68. Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep. 2016 09 14; 6:33290.
    View in: PubMed
    Score: 0.044
  69. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol. 2016 08 21; 61(16):5993-6010.
    View in: PubMed
    Score: 0.044
  70. SU-E-T-673: Recent Developments and Comprehensive Validations of a GPU-Based Proton Monte Carlo Simulation Package, GPMC. Med Phys. 2015 Jun; 42(6):3491.
    View in: PubMed
    Score: 0.040
  71. SU-E-T-466: Implementation of An Extension Module for Dose Response Models in the TOPAS Monte Carlo Toolkit. Med Phys. 2015 Jun; 42(6):3441.
    View in: PubMed
    Score: 0.040
  72. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy. Med Phys. 2014 Jun; 41(6):333.
    View in: PubMed
    Score: 0.038
  73. WE-F-105-03: Development of GPMC V2.0, a GPU-Based Monte Carlo Dose Calculation Package for Proton Radiotherapy. Med Phys. 2013 Jun; 40(6Part30):498.
    View in: PubMed
    Score: 0.035
  74. TU-A-108-01: Four-Dimensional Monte Carlo Using the TOPAS TOol for PArticle Simulation. Med Phys. 2013 Jun; 40(6Part25):419.
    View in: PubMed
    Score: 0.035
  75. Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries. Phys Med Biol. 2012 Oct 21; 57(20):6671-80.
    View in: PubMed
    Score: 0.034
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.