Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Jeffrey A Meyerhardt, M.D.

Co-Author

This page shows the publications co-authored by Jeffrey Meyerhardt and Jonathan Nowak.
Connection Strength

2.550
  1. Prognostic significance of myeloid immune cells and their spatial distribution in the colorectal cancer microenvironment. J Immunother Cancer. 2021 04; 9(4).
    View in: PubMed
    Score: 0.239
  2. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res. 2021 01; 9(1):8-19.
    View in: PubMed
    Score: 0.231
  3. Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections. Clin Cancer Res. 2020 08 15; 26(16):4326-4338.
    View in: PubMed
    Score: 0.225
  4. Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunol Immunother. 2021 Sep 16.
    View in: PubMed
    Score: 0.062
  5. Association of PIK3CA mutation and PTEN loss with expression of CD274 (PD-L1) in colorectal carcinoma. Oncoimmunology. 2021; 10(1):1956173.
    View in: PubMed
    Score: 0.061
  6. Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. J Natl Cancer Inst. 2021 Jul 15.
    View in: PubMed
    Score: 0.061
  7. Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discov. 2021 Oct; 11(10):2446-2455.
    View in: PubMed
    Score: 0.061
  8. Tumor Long Interspersed Nucleotide Element-1 (LINE-1) Hypomethylation in Relation to Age of Colorectal Cancer Diagnosis and Prognosis. Cancers (Basel). 2021 Apr 22; 13(9).
    View in: PubMed
    Score: 0.060
  9. Association of Fusobacterium nucleatum with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clin Cancer Res. 2021 May 15; 27(10):2816-2826.
    View in: PubMed
    Score: 0.059
  10. Dairy intake during adolescence and risk of colorectal adenoma later in life. Br J Cancer. 2021 03; 124(6):1160-1168.
    View in: PubMed
    Score: 0.059
  11. Coffee Intake and Colorectal Cancer Incidence According to T-Cell Response. JNCI Cancer Spectr. 2020 Dec; 4(6):pkaa068.
    View in: PubMed
    Score: 0.057
  12. Tumour budding, poorly differentiated clusters, and T-cell response in colorectal cancer. EBioMedicine. 2020 Jul; 57:102860.
    View in: PubMed
    Score: 0.057
  13. Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectr. 2020 Aug; 4(5):pkaa040.
    View in: PubMed
    Score: 0.056
  14. Metabolic Profiling of Formalin-Fixed Paraffin-Embedded Tissues Discriminates Normal Colon from Colorectal Cancer. Mol Cancer Res. 2020 06; 18(6):883-890.
    View in: PubMed
    Score: 0.056
  15. An integrated analysis of lymphocytic reaction, tumour molecular characteristics and patient survival in colorectal cancer. Br J Cancer. 2020 04; 122(9):1367-1377.
    View in: PubMed
    Score: 0.056
  16. Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. J Pathol. 2020 04; 250(4):397-408.
    View in: PubMed
    Score: 0.055
  17. Night-Shift Work Duration and Risk of Colorectal Cancer According to IRS1 and IRS2 Expression. Cancer Epidemiol Biomarkers Prev. 2020 01; 29(1):133-140.
    View in: PubMed
    Score: 0.054
  18. Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes Control. 2019 Jun; 30(6):637-649.
    View in: PubMed
    Score: 0.052
  19. Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: Results from two prospective cohorts and CALGB 89803 (Alliance) trial. Eur J Cancer. 2019 04; 111:82-93.
    View in: PubMed
    Score: 0.052
  20. Calcium Intake and Risk of Colorectal Cancer According to Tumor-infiltrating T Cells. Cancer Prev Res (Phila). 2019 05; 12(5):283-294.
    View in: PubMed
    Score: 0.052
  21. Physical Activity and Colorectal Cancer Prognosis According to Tumor-Infiltrating T Cells. JNCI Cancer Spectr. 2018 Oct; 2(4):pky058.
    View in: PubMed
    Score: 0.051
  22. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst. 2019 01 01; 111(1):42-51.
    View in: PubMed
    Score: 0.051
  23. The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol. 2018 12; 188(12):2839-2852.
    View in: PubMed
    Score: 0.050
  24. Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol Res. 2018 11; 6(11):1327-1336.
    View in: PubMed
    Score: 0.050
  25. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer. 2018 11; 103:98-107.
    View in: PubMed
    Score: 0.050
  26. Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov. 2018 09; 8(9):1096-1111.
    View in: PubMed
    Score: 0.049
  27. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018; 7(7):e1442999.
    View in: PubMed
    Score: 0.048
  28. Tumor expression of calcium sensing receptor and colorectal cancer survival: Results from the nurses' health study and health professionals follow-up study. Int J Cancer. 2017 12 15; 141(12):2471-2479.
    View in: PubMed
    Score: 0.047
  29. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells. Oncotarget. 2017 Oct 20; 8(50):87379-87389.
    View in: PubMed
    Score: 0.047
  30. Calcium intake and risk of colorectal cancer according to expression status of calcium-sensing receptor (CASR). Gut. 2018 08; 67(8):1475-1483.
    View in: PubMed
    Score: 0.046
  31. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol. 2017 Jul 01; 3(7):921-927.
    View in: PubMed
    Score: 0.046
  32. Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. Eur J Epidemiol. 2017 05; 32(5):393-407.
    View in: PubMed
    Score: 0.046
  33. Aspirin Use and Colorectal Cancer Survival According to Tumor CD274 (Programmed Cell Death 1 Ligand 1) Expression Status. J Clin Oncol. 2017 Jun 01; 35(16):1836-1844.
    View in: PubMed
    Score: 0.045
  34. Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers. Int J Cancer. 2017 06 15; 140(12):2648-2656.
    View in: PubMed
    Score: 0.045
  35. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol. 2016 Nov 03; 7(11):e200.
    View in: PubMed
    Score: 0.044
  36. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016 10 18; 17(4):1206.
    View in: PubMed
    Score: 0.044
  37. Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget. 2016 Aug 23; 7(34):55098-55109.
    View in: PubMed
    Score: 0.043
  38. MicroRNA MIR21 (miR-21) and PTGS2 Expression in Colorectal Cancer and Patient Survival. Clin Cancer Res. 2016 08 01; 22(15):3841-8.
    View in: PubMed
    Score: 0.042
  39. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016 12; 65(12):1973-1980.
    View in: PubMed
    Score: 0.041
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.