Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

Shuji Ogino, Ph.D., M.D.

Co-Author

This page shows the publications co-authored by Shuji Ogino and Paul Lochhead.
Connection Strength

6.530
  1. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival. Am J Clin Nutr. 2015 Nov; 102(5):1134-41.
    View in: PubMed
    Score: 0.651
  2. Response. J Natl Cancer Inst. 2014 Aug; 106(8).
    View in: PubMed
    Score: 0.602
  3. Progress and opportunities in molecular pathological epidemiology of colorectal premalignant lesions. Am J Gastroenterol. 2014 Aug; 109(8):1205-14.
    View in: PubMed
    Score: 0.596
  4. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol. 2015 Jan; 28(1):14-29.
    View in: PubMed
    Score: 0.595
  5. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013 Aug 07; 105(15):1151-6.
    View in: PubMed
    Score: 0.560
  6. Insulin-like growth factor 2 messenger RNA binding protein 3 (IGF2BP3) is a marker of unfavourable prognosis in colorectal cancer. Eur J Cancer. 2012 Dec; 48(18):3405-13.
    View in: PubMed
    Score: 0.523
  7. Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. Gastroenterology. 2017 12; 153(6):1517-1530.e14.
    View in: PubMed
    Score: 0.186
  8. A Prospective Study of Smoking and Risk of Synchronous Colorectal Cancers. Am J Gastroenterol. 2017 03; 112(3):493-501.
    View in: PubMed
    Score: 0.178
  9. Regular Aspirin Use Associates With Lower Risk of Colorectal Cancers With Low Numbers of Tumor-Infiltrating Lymphocytes. Gastroenterology. 2016 11; 151(5):879-892.e4.
    View in: PubMed
    Score: 0.172
  10. Review Article: The Role of Molecular Pathological Epidemiology in the Study of Neoplastic and Non-neoplastic Diseases in the Era of Precision Medicine. Epidemiology. 2016 07; 27(4):602-11.
    View in: PubMed
    Score: 0.172
  11. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016 Feb 28; 35(5):782-800.
    View in: PubMed
    Score: 0.165
  12. Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to KRAS Mutation Status. J Natl Cancer Inst. 2016 Apr; 108(4).
    View in: PubMed
    Score: 0.165
  13. Molecular pathological epidemiology gives clues to paradoxical findings. Eur J Epidemiol. 2015 Oct; 30(10):1129-35.
    View in: PubMed
    Score: 0.163
  14. Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst. 2014 Sep; 106(9).
    View in: PubMed
    Score: 0.151
  15. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013 Jun 26; 309(24):2563-71.
    View in: PubMed
    Score: 0.139
  16. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology. Oncogene. 2014 Jun 05; 33(23):2949-55.
    View in: PubMed
    Score: 0.139
  17. A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol. 2013 Jul 01; 178(1):84-100.
    View in: PubMed
    Score: 0.139
  18. Physical activity, tumor PTGS2 expression, and survival in patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2013 Jun; 22(6):1142-52.
    View in: PubMed
    Score: 0.138
  19. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with ß-catenin (CTNNB1) status. Cancer Res. 2013 Mar 01; 73(5):1600-10.
    View in: PubMed
    Score: 0.136
  20. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013 Apr; 26(4):465-84.
    View in: PubMed
    Score: 0.135
  21. Prospective study of family history and colorectal cancer risk by tumor LINE-1 methylation level. J Natl Cancer Inst. 2013 Jan 16; 105(2):130-40.
    View in: PubMed
    Score: 0.134
  22. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012 Oct 25; 367(17):1596-606.
    View in: PubMed
    Score: 0.133
  23. Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res. 2012 Sep 01; 18(17):4753-63.
    View in: PubMed
    Score: 0.130
  24. Colorectal cancer: a tale of two sides or a continuum? Gut. 2012 Jun; 61(6):794-7.
    View in: PubMed
    Score: 0.128
  25. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012 Apr 15; 18(8):2257-68.
    View in: PubMed
    Score: 0.127
  26. Acid-suppressive medications and risk of colorectal cancer: results from three large prospective cohort studies. Br J Cancer. 2020 09; 123(5):844-851.
    View in: PubMed
    Score: 0.056
  27. Long-term use of antibiotics and risk of colorectal adenoma. Gut. 2018 04; 67(4):672-678.
    View in: PubMed
    Score: 0.045
  28. SMO expression in colorectal cancer: associations with clinical, pathological, and molecular features. Ann Surg Oncol. 2014 Dec; 21(13):4164-73.
    View in: PubMed
    Score: 0.037
  29. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N Engl J Med. 2013 Sep 19; 369(12):1095-105.
    View in: PubMed
    Score: 0.035
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.