Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Dawn Lisa Demeo, M.D.

Co-Author

This page shows the publications co-authored by Dawn Demeo and Nan Laird.
Connection Strength

0.880
  1. Combining disease models to test for gene-environment interaction in nuclear families. Biometrics. 2011 Dec; 67(4):1260-70.
    View in: PubMed
    Score: 0.116
  2. Parsing the effects of individual SNPs in candidate genes with family data. Hum Hered. 2010; 69(2):91-103.
    View in: PubMed
    Score: 0.106
  3. A family-based association test for repeatedly measured quantitative traits adjusting for unknown environmental and/or polygenic effects. Stat Appl Genet Mol Biol. 2004; 3:Article17.
    View in: PubMed
    Score: 0.073
  4. PBAT: tools for family-based association studies. Am J Hum Genet. 2004 Feb; 74(2):367-9.
    View in: PubMed
    Score: 0.071
  5. Using the noninformative families in family-based association tests: a powerful new testing strategy. Am J Hum Genet. 2003 Oct; 73(4):801-11.
    View in: PubMed
    Score: 0.069
  6. Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet. 2002 Dec; 71(6):1330-41.
    View in: PubMed
    Score: 0.065
  7. Univariate and multivariate family-based association analysis of the IL-13 ARG130GLN polymorphism in the Childhood Asthma Management Program. Genet Epidemiol. 2002 Nov; 23(4):335-48.
    View in: PubMed
    Score: 0.065
  8. Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain. Genet Epidemiol. 2021 10; 45(7):685-693.
    View in: PubMed
    Score: 0.059
  9. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. Am J Respir Crit Care Med. 2017 03 15; 195(6):757-771.
    View in: PubMed
    Score: 0.044
  10. Sex-Based Genetic Association Study Identifies CELSR1 as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. Am J Respir Cell Mol Biol. 2017 03; 56(3):332-341.
    View in: PubMed
    Score: 0.044
  11. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet. 2015 Dec 03; 16:138.
    View in: PubMed
    Score: 0.040
  12. A novel method for detecting association between DNA methylation and diseases using spatial information. Genet Epidemiol. 2014 Dec; 38(8):714-21.
    View in: PubMed
    Score: 0.037
  13. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014 Mar; 2(3):214-25.
    View in: PubMed
    Score: 0.035
  14. Genomic screening and replication using the same data set in family-based association testing. Nat Genet. 2005 Jul; 37(7):683-91.
    View in: PubMed
    Score: 0.019
  15. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005 Jul; 33(1):71-8.
    View in: PubMed
    Score: 0.019
  16. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet. 2004 Aug 01; 13(15):1649-56.
    View in: PubMed
    Score: 0.018
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.