Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility is currently unavailable.

Constantine S Mitsiades, Ph.D., M.D.

Co-Author

This page shows the publications co-authored by Constantine Mitsiades and Dharminder Chauhan.
Connection Strength

0.992
  1. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol. 2009 Dec; 147(5):672-6.
    View in: PubMed
    Score: 0.111
  2. Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol. 2009 Apr; 46(2):166-75.
    View in: PubMed
    Score: 0.108
  3. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008 Jul 01; 68(13):5216-25.
    View in: PubMed
    Score: 0.103
  4. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004 Mar; 5(3):221-30.
    View in: PubMed
    Score: 0.076
  5. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004 Jan 13; 101(2):540-5.
    View in: PubMed
    Score: 0.075
  6. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 2003 Oct 15; 63(20):6689-96.
    View in: PubMed
    Score: 0.074
  7. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002 Aug 22; 21(37):5673-83.
    View in: PubMed
    Score: 0.068
  8. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics. 2018 12; 15(12):1033-1052.
    View in: PubMed
    Score: 0.053
  9. New proteasome inhibitors in myeloma. Curr Hematol Malig Rep. 2012 Dec; 7(4):258-66.
    View in: PubMed
    Score: 0.035
  10. Managing multiple myeloma: the emerging role of novel therapies and adapting combination treatment for higher risk settings. Br J Haematol. 2011 Sep; 154(6):755-62.
    View in: PubMed
    Score: 0.032
  11. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010 May 06; 115(18):3772-5.
    View in: PubMed
    Score: 0.029
  12. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res. 2009 Dec 01; 15(23):7153-60.
    View in: PubMed
    Score: 0.028
  13. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009 Oct; 7(9):947-60.
    View in: PubMed
    Score: 0.028
  14. Bortezomib in the management of multiple myeloma. Cancer Manag Res. 2009 Sep 08; 1:107-17.
    View in: PubMed
    Score: 0.028
  15. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007; 317-23.
    View in: PubMed
    Score: 0.023
  16. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003 Dec 15; 102(13):4504-11.
    View in: PubMed
    Score: 0.018
  17. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003 May 15; 101(10):4055-62.
    View in: PubMed
    Score: 0.018
  18. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003 Mar 15; 101(6):2377-80.
    View in: PubMed
    Score: 0.017
  19. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002 Nov 01; 100(9):3063-7.
    View in: PubMed
    Score: 0.017
  20. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002 Oct 29; 99(22):14374-9.
    View in: PubMed
    Score: 0.017
  21. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002 Jun 15; 99(12):4525-30.
    View in: PubMed
    Score: 0.017
  22. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002 Jun 01; 99(11):4079-86.
    View in: PubMed
    Score: 0.017
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.