Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Noopur Raje, M.D.

Co-Author

This page shows the publications co-authored by Noopur Raje and Teru Hideshima.
Connection Strength

3.888
  1. Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor, AZD8055, in multiple myeloma. . 2014 Nov; 13(11):2489-500.
    View in: PubMed
    Score: 0.151
  2. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014 Aug; 166(3):401-9.
    View in: PubMed
    Score: 0.147
  3. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone. 2013 Apr; 53(2):487-96.
    View in: PubMed
    Score: 0.135
  4. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012 Mar 15; 119(11):2579-89.
    View in: PubMed
    Score: 0.126
  5. Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent Aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. Clin Cancer Res. 2011 May 15; 17(10):3259-71.
    View in: PubMed
    Score: 0.119
  6. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 2010 Apr; 9(4):963-75.
    View in: PubMed
    Score: 0.111
  7. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010 May 06; 115(18):3772-5.
    View in: PubMed
    Score: 0.111
  8. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A. 2010 Mar 16; 107(11):5124-9.
    View in: PubMed
    Score: 0.111
  9. High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res. 2009 Sep 15; 15(18):5829-39.
    View in: PubMed
    Score: 0.107
  10. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009 Jul 30; 114(5):1046-52.
    View in: PubMed
    Score: 0.105
  11. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood. 2009 May 21; 113(21):5228-36.
    View in: PubMed
    Score: 0.103
  12. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008 Apr 15; 14(8):2387-95.
    View in: PubMed
    Score: 0.097
  13. A review of lenalidomide in combination with dexamethasone for the treatment of multiple myeloma. Ther Clin Risk Manag. 2008 Feb; 4(1):129-36.
    View in: PubMed
    Score: 0.096
  14. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007 Oct 01; 13(19):5903-9.
    View in: PubMed
    Score: 0.094
  15. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol. 2007 Sep; 138(6):783-91.
    View in: PubMed
    Score: 0.093
  16. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006 Oct 01; 12(19):5887-94.
    View in: PubMed
    Score: 0.087
  17. Therapeutic use of immunomodulatory drugs in the treatment of multiple myeloma. Expert Rev Anticancer Ther. 2006 Sep; 6(9):1239-47.
    View in: PubMed
    Score: 0.087
  18. Didox, a ribonucleotide reductase inhibitor, induces apoptosis and inhibits DNA repair in multiple myeloma cells. Br J Haematol. 2006 Oct; 135(1):52-61.
    View in: PubMed
    Score: 0.087
  19. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006 May 15; 107(10):4053-62.
    View in: PubMed
    Score: 0.083
  20. Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene. 2005 Apr 28; 24(19):3121-9.
    View in: PubMed
    Score: 0.079
  21. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood. 2005 Aug 01; 106(3):1042-7.
    View in: PubMed
    Score: 0.079
  22. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene. 2004 Nov 18; 23(54):8766-76.
    View in: PubMed
    Score: 0.077
  23. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004 Dec 15; 104(13):4188-93.
    View in: PubMed
    Score: 0.075
  24. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004 May; 125(3):343-52.
    View in: PubMed
    Score: 0.074
  25. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000 Nov 01; 96(9):2943-50.
    View in: PubMed
    Score: 0.058
  26. Kaposi's sarcoma-associated herpesvirus gene sequences are detectable at low copy number in primary amyloidosis. Amyloid. 2000 Jun; 7(2):126-32.
    View in: PubMed
    Score: 0.056
  27. Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi's sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res. 2000 Mar; 6(3):1180-9.
    View in: PubMed
    Score: 0.055
  28. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018 09; 32(9):1932-1947.
    View in: PubMed
    Score: 0.048
  29. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun. 2016 Jan 05; 7:10258.
    View in: PubMed
    Score: 0.041
  30. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015 Oct 15; 21(20):4607-18.
    View in: PubMed
    Score: 0.040
  31. Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. Cell Rep. 2015 Feb 10; 10(5):755-770.
    View in: PubMed
    Score: 0.039
  32. A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood. 2014 Mar 06; 123(10):1461-9.
    View in: PubMed
    Score: 0.036
  33. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013 Apr 11; 121(15):2975-87.
    View in: PubMed
    Score: 0.034
  34. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol. 2011 Nov 10; 29(32):4243-9.
    View in: PubMed
    Score: 0.031
  35. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010 Oct 28; 116(17):3227-37.
    View in: PubMed
    Score: 0.028
  36. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood. 2010 Sep 02; 116(9):1460-8.
    View in: PubMed
    Score: 0.028
  37. The treatment of multiple myeloma patients not eligible for asct. Mediterr J Hematol Infect Dis. 2010 May 03; 2(2):e2010009.
    View in: PubMed
    Score: 0.028
  38. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 2010 Aug 05; 116(5):679-86.
    View in: PubMed
    Score: 0.028
  39. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood. 2010 Jun 24; 115(25):5202-13.
    View in: PubMed
    Score: 0.028
  40. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res. 2009 Dec 01; 15(23):7153-60.
    View in: PubMed
    Score: 0.027
  41. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009 Oct 06; 16(4):309-23.
    View in: PubMed
    Score: 0.027
  42. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009 Oct; 7(9):947-60.
    View in: PubMed
    Score: 0.027
  43. Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009 Sep 24; 114(13):2699-708.
    View in: PubMed
    Score: 0.027
  44. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009 Jun 15; 15(12):4028-37.
    View in: PubMed
    Score: 0.026
  45. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009 Jul 09; 114(2):371-9.
    View in: PubMed
    Score: 0.026
  46. SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009 Jan 22; 113(4):846-55.
    View in: PubMed
    Score: 0.025
  47. Fatty acid synthase is a novel therapeutic target in multiple myeloma. Br J Haematol. 2008 May; 141(5):659-71.
    View in: PubMed
    Score: 0.024
  48. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. Br J Haematol. 2008 May; 141(5):598-606.
    View in: PubMed
    Score: 0.024
  49. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008 Feb; 118(2):491-504.
    View in: PubMed
    Score: 0.024
  50. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007 Oct; 139(1):55-63.
    View in: PubMed
    Score: 0.023
  51. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood. 2007 Nov 15; 110(10):3744-52.
    View in: PubMed
    Score: 0.023
  52. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. . 2007 Jun; 6(6):1718-27.
    View in: PubMed
    Score: 0.023
  53. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007 Jul 15; 110(2):709-18.
    View in: PubMed
    Score: 0.023
  54. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007 Feb 15; 67(4):1680-8.
    View in: PubMed
    Score: 0.022
  55. Novel etodolac analog SDX-308 (CEP-18082) induces cytotoxicity in multiple myeloma cells associated with inhibition of beta-catenin/TCF pathway. Leukemia. 2007 Mar; 21(3):535-40.
    View in: PubMed
    Score: 0.022
  56. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol. 2007 Feb; 136(3):414-23.
    View in: PubMed
    Score: 0.022
  57. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007 Feb 01; 109(3):1220-7.
    View in: PubMed
    Score: 0.022
  58. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2007 Apr 05; 26(16):2374-80.
    View in: PubMed
    Score: 0.022
  59. In vivo and in vitro cytotoxicity of R-etodolac with dexamethasone in glucocorticoid-resistant multiple myeloma cells. Br J Haematol. 2006 Jul; 134(1):37-44.
    View in: PubMed
    Score: 0.021
  60. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01; 66(13):6675-82.
    View in: PubMed
    Score: 0.021
  61. FQPD, a novel immunomodulatory drug, has significant in vitro activity in multiple myeloma. Br J Haematol. 2006 Mar; 132(6):698-704.
    View in: PubMed
    Score: 0.021
  62. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006 Jan 01; 66(1):184-91.
    View in: PubMed
    Score: 0.021
  63. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene. 2005 Sep 01; 24(38):5888-96.
    View in: PubMed
    Score: 0.020
  64. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res. 2005 Aug 15; 65(16):7478-84.
    View in: PubMed
    Score: 0.020
  65. Antimyeloma activity of two novel N-substituted and tetraflourinated thalidomide analogs. Leukemia. 2005 Jul; 19(7):1253-61.
    View in: PubMed
    Score: 0.020
  66. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood. 2005 Sep 01; 106(5):1794-800.
    View in: PubMed
    Score: 0.020
  67. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood. 2005 Jul 15; 106(2):706-12.
    View in: PubMed
    Score: 0.020
  68. Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood. 2005 Jun 01; 105(11):4470-6.
    View in: PubMed
    Score: 0.019
  69. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005 Jan; 128(2):192-203.
    View in: PubMed
    Score: 0.019
  70. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004 Nov 01; 104(9):2886-92.
    View in: PubMed
    Score: 0.019
  71. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003 Aug 15; 102(4):1435-42.
    View in: PubMed
    Score: 0.017
  72. Absence of biologically important Kaposi sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood. 2002 Jul 15; 100(2):698-700.
    View in: PubMed
    Score: 0.016
  73. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001 Jul 15; 98(2):428-35.
    View in: PubMed
    Score: 0.015
  74. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001 Jul 01; 98(1):210-6.
    View in: PubMed
    Score: 0.015
  75. Ku86 variant expression and function in multiple myeloma cells is associated with increased sensitivity to DNA damage. J Immunol. 2000 Dec 01; 165(11):6347-55.
    View in: PubMed
    Score: 0.015
  76. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 2000 Nov 01; 96(9):3147-53.
    View in: PubMed
    Score: 0.014
  77. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem. 2000 Sep 08; 275(36):27845-50.
    View in: PubMed
    Score: 0.014
  78. Isolation and characterization of human multiple myeloma cell enriched populations. J Immunol Methods. 2000 Feb 21; 235(1-2):11-9.
    View in: PubMed
    Score: 0.014
  79. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood. 2000 Feb 01; 95(3):1039-46.
    View in: PubMed
    Score: 0.014
  80. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene. 1999 Nov 18; 18(48):6733-40.
    View in: PubMed
    Score: 0.014
  81. Functional interaction between retinoblastoma protein and stress-activated protein kinase in multiple myeloma cells. Cancer Res. 1999 Mar 15; 59(6):1192-5.
    View in: PubMed
    Score: 0.013
  82. Detection of Kaposi's sarcoma herpesvirus DNA sequences in multiple myeloma bone marrow stromal cells. Blood. 1999 Mar 01; 93(5):1482-6.
    View in: PubMed
    Score: 0.013
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.