Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Ritchie Edward Brown, Ph.D.

Profile Picture

Cambridge University, EnglandB.A.06/1992Natural Sciences
Cambridge University, EnglandM.A.01/1996Natural Sciences
Otto-von-Guericke University, Magdeburg, GermanyDr. Rer. Nat.11/1996Neurophysiology

I am a Research Health Scientist at VA Boston Healthcare System (VA BHS) and an Associate Professor of Psychiatry at Harvard Medical School. I am an affiliated faculty member and Preceptor of a T32 training grant associated with the HMS Division of Sleep Medicine. My laboratory at the West Roxbury campus of VA BHS studies the sleep-wake cycle and brain electrical rhythms in mice. I am the PI of a VA Merit award . I am also an investigator on 4 other NIH/VA grants. My scholarship includes 49 original peer-reviewed articles & 9 peer-reviewed review articles, many of which are highly cited (average 82 citations per publication; 27 articles with >50 citations). I have given local, national and international presentations of my work. I served as the chair of the Scientific Review Committee of the Sleep Research Society for two years and I am currently Associate Editor at Frontiers in Neuroscience, Sleep and circadian rhythms section. I have reviewed grant proposals for NIH, DoD and other scientific organizations around the world. I currently act as a mentor for a postdoctoral fellows and three Instructors. Many of my previous mentees have gone on to senior faculty positions in the US, Europe and Asia. I am course director/neuroscience expert for the South Shore Residency Program for HMS psychiatry residents at VA BHS, a member of the program evaluation committee and the local HMS promotions committee.
SOCIETY MEMBERSHIPS: Sleep Research Society (SRS), Society for Neuroscience
CURRENT TRAINEES: Timothy Troppoli, Fumi Katsuki, Felipe Schiffino (co-mentored with Robert Strecker), David Uygun co-mentored with Radhika Basheer).
RESEARCH HIGHLIGHTS: In 1999, the sleep disorder narcolepsy was shown to be caused by degeneration of orexin neurons. While a postdoctoral researcher in Germany I reported the excitatory effects of the orexins on wake-promoting aminergic neurons (4 articles with >150 citations). My scientific findings have been translated into practice in several important ways. The loss of the orexin/hypocretin effects I demonstrated is thought to explain several symptoms of narcolepsy, such as excessive daytime sleepiness and sleep-associated hallucinations. As such, a new drug, Belsomra, which antagonizes brain orexin/hypocretin receptors was recently approved by the FDA as a novel treatment for insomnia. In addition, the orexin excitation of ventral tegmental area dopamine neurons, which we demonstrated for the first time (Korotkova et al., 2003, > 300 citations, Brown senior author) has been implicated in reinstatement of drug addiction.
Synthesis of knowledge and formation of theory concerning cellular mechanisms which control sleep-wake behavior. I have authored 9 comprehensive review articles and 4 book chapters which summarize our current knowledge of the cellular mechanisms controlling sleep-wakefulness and EEG. This includes a review of the physiology of the brain histamine system, the most recently discovered of the brain aminergic systems (Brown et al., 2001; >700 citations). Based on this review I proposed the brain histamine system is a “danger response system” which acts to increase wakefulness and alertness and suppress unnecessary systems (e.g. feeding) in the short-term in response to threats. More recently, I was the first author and major writer of an unusually comprehensive (100 page, 1479 references) review of sleep-wake mechanisms published in Physiological reviews, the most highly cited physiology journal. This review (Brown et al., 2012) was selected as a highly cited article in field of biology and biochemistry by essential science indicators (Thomson Reuters) and has ~500 citations.
Identification of the cellular properties and functional role of GABAergic neurons regulating arousal and REM sleep (reviewed in Brown and McKenna, 2015). Pharmacological agents which enhance GABAergic neurotransmission represent a major class of anxiolytic, hypnotic and anesthetic drugs. However, surprisingly little is known about the location, subtypes and properties of GABAergic neurons controlling the sleep-wake cycle due to technical difficulties in identification. My group validated a novel genetic tool expressing green fluorescent protein in GABAergic neurons (GAD67-GFP knock-in mice) to investigate the properties of GABAergic neurons involved in sleep-wake control and cortical rhythms. We showed that GFP selectively labels GABAergic neurons (Brown et al., 2008; McNally et al., 2011; McKenna et al., 2013) and confirmed that sleep-wake behavior (Chen et al., 2010) and cortical rhythms are normal (McNally et al., 2011). Using these mice, I performed the first electrophysiological recordings from identified GABAergic neurons in the brainstem involved in control of REM sleep (Brown et al., 2008) and basal forebrain (BF) GABAergic neurons projecting to the neocortex (McKenna et al., 2013). My mentee and I found that these BF GABA neurons are excited by neighboring cholinergic neurons (Yang et al., 2014) and together with other investigators in the department we found that these neurons regulate cortical gamma oscillations (Kim et al., 2015). These findings represent a paradigm shift away from a cholinergic-centric view of BF control of arousal towards a model whereby cholinergic neurons work together with neighboring GABAergic neurons to ‘wake up the cortex’. The BF is severely affected in Alzheimer’s disease and other types of dementia. Thus, our results may have important implications for the treatment of the cognitive impairments associated with these conditions.
Control of neocortical gamma band oscillations (GBO; 30-80 Hz). Cortical GBO are involved in cognitive functions such as attention and working memory and are abnormal in several neuropsychiatric disorders, in particular, schizophrenia. Designing treatments to correct GBO abnormalities requires better methods to elicit them in reduced preparations and a better understanding of their state-dependent control. My postdoc and I developed a novel method to elicit GBO in neocortical slices in vitro (McNally et al., 2011). We found using this method that the psychomimetic and rapidly acting anti-depressant, ketamine, causes GBO abnormalities which mimic those observed in schizophrenia (McNally et al., 2011, 2013). Recently our group found that GBO are regulated by inputs from a particular subcortical system, basal forebrain parvalbumin neurons (Kim et al., PNAS 2015). These results identify two potential avenues to develop novel therapeutic agents to correct GBO abnormalities: a) study of effects on cortical circuitry using our novel in vitro method and; b) modulation of the activity level of basal forebrain parvalbumin neurons. In recent work, we are manipulating this system to study the understand the symptoms of schizophrenia (McNally et al., under review) and improve the pathophysiology in Alzheimer’s disease model mice (Schiffino et al., unpublished). Furthermore, our preliminary work suggests a role of the basal forebrain system in control of attention and rescuing the effects of sleep deprivation (Felipe Schiffino F32 application selected for funding).
Control of sleep spindles by the thalamic reticular nucleus. Abnormalities in sleep spindles, a 10-15 Hz, waxing and waning oscillation observed in light non-REM sleep have been linked to deficits in memory consolidation in schizophrenia. Our major findings/advances are as follows: (i) We published two complementary methods to investigate sleep spindles and their dysfunction in neurophysiological disorders (Prerau et a., 2017; Uygun et al., 2019); (ii) Using a novel paradigm of optogenetic stimulation of thalamic reticular nucleus (TRN) parvalbumin (PV) neurons we can elicit ‘naturalistic’ sleep spindles (Thankachan, Katsuki et al., 2019) without altering behavioral state, a major methodological advance which facilitates our ongoing work to test the role of spindles in sleep-dependent memory consolidation; (iii) The type of T-type calcium channels most highly expressed in TRN, Cav3.3, is a Sz risk gene. We found that pharmacological blockade of T-type calcium channels in TRN inhibited sleep spindles without affecting NREM sleep time or cortical delta band activity (Thankachan et al., 2019); (iv) Optogenetic stimulation studies revealed that the Basal forebrain GABA/PV input to TRN regulates sleep spindles and wakefulness (Thankachan, Katsuki et al., 2019). (v) Manipulations of TRN activity also modulate other electrophysiological features of schizophrenia, cortical gamma (30-80 Hz) and delta oscillations (1-4 Hz) during wakefulness (Thankachan, Katsuki et al., 2019). These results suggest that manipulations of the activity of TRN PV neurons or their major input arising from basal forebrain PV neurons may be beneficial in correcting electrophysiological abnormalities observed in schizophrenia and promote sleep-dependent memory consolidation.

TEACHING. I serve as a course director and basic neuroscience expert in teaching courses to psychiatry residents at the Brockton campus of VA BHS. I have developed innovative curricula for these courses. The teaching focus is on having residents learn how to talk about neuroscience and apply it in their clinical work. For example, in my course ‘Eat. Sleep, Exercise’, after teaching physiology and neuroscience, I have students role-play how to teach their patients about the science underlying patients’ challenges with eating, sleep and exercising.

SUMMARY. My research reveals the brain circuits and cellular mechanisms which wake us up and put us to sleep. I apply this knowledge to animal models of neuropsychiatric disease in order to design rational treatments and disseminate this knowledge through the writing of comprehensive review articles and book chapters, training junior researchers and teaching medical residents.

The research activities and funding listed below are automatically derived from NIH ExPORTER and other sources, which might result in incorrect or missing items. Faculty can login to make corrections and additions.
  1. I01BX004673 (BROWN, RITCHIE EDWARD) Apr 1, 2020 - Mar 31, 2024
    Specification of sleep-wake control neurons in the basal forebrain
    Role: Principal Investigator
  2. R21NS093000 (BROWN, RITCHIE EDWARD) Jul 15, 2015 - Jun 30, 2019
    vGLUT2-Tomato mice: a novel tool to study Basal Forebrain Glutamate Neurons
    Role: Principal Investigator
  3. I01BX001356 (BROWN, RITCHIE EDWARD) Oct 1, 2011 - Sep 30, 2020
    Sleep Spindles: Role of Thalamic Reticular Nucleus and Parvalbumin GABA Neurons
    Role: Principal Investigator
  4. R21MH094803 (BROWN, RITCHIE EDWARD) Jul 25, 2011 - Apr 30, 2014
    Modeling schizophrenia gamma deficits using cell-specific RNAi knockdown of GAD67
    Role: Principal Investigator
  5. R01MH039683 (BROWN, RITCHIE EDWARD) Sep 30, 1984 - Jun 30, 2020
    Synaptic Basis of Sleep Cycle Control
    Role Description: Former PI, Robert W. McCarley. Ritchie Brown Replacement PI 2017-2020
    Role: PI

Featured Content

Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
This operation might take several minutes to complete. Please do not close your browser.
Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: HMS/HSDM faculty should contact contactcatalyst.harvard.edu. For faculty or fellow appointment updates and changes, please ask your appointing department to contact HMS. For fellow personal and demographic information, contact HMS Human Resources at human_resourceshms.harvard.edu. For faculty personal and demographic information, contact HMS Office for Faculty Affairs at facappthms.harvard.edu.
Brown's Networks
Click the
buttons for more information and interactive visualizations!
Concepts (254)
Co-Authors (20)
Similar People (60)
Same Department 
Physical Neighbors
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.