Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Jorge Castillo, M.D.

Co-Author

This page shows the publications co-authored by Jorge Castillo and Zachary Hunter.
Connection Strength

10.557
  1. Response and survival predictors in a cohort of 319 patients with Waldenström macroglobulinemia treated with ibrutinib monotherapy. Blood Adv. 2022 02 08; 6(3):1015-1024.
    View in: PubMed
    Score: 0.246
  2. Venetoclax in Previously Treated Waldenström Macroglobulinemia. J Clin Oncol. 2022 01 01; 40(1):63-71.
    View in: PubMed
    Score: 0.243
  3. Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood. 2021 10 28; 138(17):1535-1539.
    View in: PubMed
    Score: 0.242
  4. Long-term follow-up of ibrutinib monotherapy in treatment-naive patients with Waldenstrom macroglobulinemia. Leukemia. 2022 02; 36(2):532-539.
    View in: PubMed
    Score: 0.240
  5. Natural history of Waldenström macroglobulinemia following acquired resistance to ibrutinib monotherapy. Haematologica. 2021 Jun 24.
    View in: PubMed
    Score: 0.236
  6. Partial response or better at six months is prognostic of superior progression-free survival in Waldenström macroglobulinaemia patients treated with ibrutinib. Br J Haematol. 2021 02; 192(3):542-550.
    View in: PubMed
    Score: 0.226
  7. Multicenter phase 2 study of daratumumab monotherapy in patients with previously treated Waldenström macroglobulinemia. Blood Adv. 2020 10 27; 4(20):5089-5092.
    View in: PubMed
    Score: 0.225
  8. Comparative genomics of CXCR4MUT and CXCR4WT single cells in Waldenström's macroglobulinemia. Blood Adv. 2020 09 22; 4(18):4550-4553.
    View in: PubMed
    Score: 0.224
  9. Long-Term Follow-Up of Ibrutinib Monotherapy in Symptomatic, Previously Treated Patients With Waldenström Macroglobulinemia. J Clin Oncol. 2021 02 20; 39(6):565-575.
    View in: PubMed
    Score: 0.224
  10. Ixazomib, dexamethasone, and rituximab in treatment-naive patients with Waldenström macroglobulinemia: long-term follow-up. Blood Adv. 2020 08 25; 4(16):3952-3959.
    View in: PubMed
    Score: 0.223
  11. Response and Survival Outcomes to Ibrutinib Monotherapy for Patients With Waldenström Macroglobulinemia on and off Clinical Trials. Hemasphere. 2020 Jun; 4(3):e363.
    View in: PubMed
    Score: 0.219
  12. Genomic evolution of ibrutinib-resistant clones in Waldenström macroglobulinaemia. Br J Haematol. 2020 06; 189(6):1165-1170.
    View in: PubMed
    Score: 0.215
  13. Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. J Clin Oncol. 2020 04 10; 38(11):1198-1208.
    View in: PubMed
    Score: 0.215
  14. A matched case-control study comparing features, treatment and outcomes between patients with non-IgM lymphoplasmacytic lymphoma and Waldenström macroglobulinemia. Leuk Lymphoma. 2020 06; 61(6):1388-1394.
    View in: PubMed
    Score: 0.214
  15. CXCR4 mutational status does not impact outcomes in patients with Waldenström macroglobulinemia treated with proteasome inhibitors. Am J Hematol. 2020 04; 95(4):E95-E98.
    View in: PubMed
    Score: 0.214
  16. Deepening of response after completing rituximab-containing therapy in patients with Waldenstrom macroglobulinemia. Am J Hematol. 2020 04; 95(4):372-378.
    View in: PubMed
    Score: 0.213
  17. CXCR4S338X clonality is an important determinant of ibrutinib outcomes in patients with Waldenström macroglobulinemia. Blood Adv. 2019 10 08; 3(19):2800-2803.
    View in: PubMed
    Score: 0.210
  18. CXCR4 mutations affect presentation and outcomes in patients with Waldenström macroglobulinemia: A systematic review. Expert Rev Hematol. 2019 10; 12(10):873-881.
    View in: PubMed
    Score: 0.207
  19. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019 11; 187(3):356-363.
    View in: PubMed
    Score: 0.206
  20. Genomic landscape of Waldenström's macroglobulinemia. Hemasphere. 2019 Jun; 3(Suppl).
    View in: PubMed
    Score: 0.206
  21. Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv. 2018 11 13; 2(21):2937-2946.
    View in: PubMed
    Score: 0.197
  22. Long survival in patients with Waldenström macroglobulinaemia diagnosed at a young age. Br J Haematol. 2019 05; 185(4):799-802.
    View in: PubMed
    Score: 0.197
  23. Genomic Landscape of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am. 2018 10; 32(5):745-752.
    View in: PubMed
    Score: 0.193
  24. Ibrutinib Monotherapy in Symptomatic, Treatment-Naïve Patients With Waldenström Macroglobulinemia. J Clin Oncol. 2018 09 20; 36(27):2755-2761.
    View in: PubMed
    Score: 0.193
  25. Impact of ibrutinib dose intensity on patient outcomes in previously treated Waldenström macroglobulinemia. Haematologica. 2018 10; 103(10):e466-e468.
    View in: PubMed
    Score: 0.190
  26. Spotting the elusive Siberian tiger: Complete response to ibrutinib in a patient with Waldenström Macroglobulinemia. Am J Hematol. 2018 May 14.
    View in: PubMed
    Score: 0.190
  27. Prospective Clinical Trial of Ixazomib, Dexamethasone, and Rituximab as Primary Therapy in Waldenström Macroglobulinemia. Clin Cancer Res. 2018 07 15; 24(14):3247-3252.
    View in: PubMed
    Score: 0.189
  28. MYD88 mutated and wild-type Waldenström's Macroglobulinemia: characterization of chromosome 6q gene losses and their mutual exclusivity with mutations in CXCR4. Haematologica. 2018 09; 103(9):e408-e411.
    View in: PubMed
    Score: 0.188
  29. Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenström macroglobulinaemia. Br J Haematol. 2019 03; 184(6):1011-1014.
    View in: PubMed
    Score: 0.188
  30. Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenström macroglobulinaemia. Br J Haematol. 2018 04; 181(1):77-85.
    View in: PubMed
    Score: 0.187
  31. Ibrutinib discontinuation in Waldenström macroglobulinemia: Etiologies, outcomes, and IgM rebound. Am J Hematol. 2018 08; 93(4):511-517.
    View in: PubMed
    Score: 0.186
  32. Comparing apples to oranges: A commentary on the Mayo study of MYD88 significance in Waldenstrom's macroglobulinemia. Am J Hematol. 2018 03; 93(3):E69-E71.
    View in: PubMed
    Score: 0.185
  33. MYD88 wild-type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018 02; 180(3):374-380.
    View in: PubMed
    Score: 0.184
  34. CXCL13 levels are elevated in patients with Waldenström macroglobulinemia, and are predictive of major response to ibrutinib. Haematologica. 2017 11; 102(11):e452-e455.
    View in: PubMed
    Score: 0.180
  35. Novel approaches to targeting MYD88 in Waldenström macroglobulinemia. Expert Rev Hematol. 2017 08; 10(8):739-744.
    View in: PubMed
    Score: 0.179
  36. Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. Br J Haematol. 2017 06; 177(5):717-725.
    View in: PubMed
    Score: 0.177
  37. Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. J Clin Oncol. 2017 Mar 20; 35(9):994-1001.
    View in: PubMed
    Score: 0.174
  38. MYD88 mutations can be used to identify malignant pleural effusions in Waldenström macroglobulinaemia. Br J Haematol. 2018 02; 180(4):578-581.
    View in: PubMed
    Score: 0.171
  39. Future therapeutic options for patients with Waldenström macroglobulinemia. Best Pract Res Clin Haematol. 2016 06; 29(2):206-215.
    View in: PubMed
    Score: 0.169
  40. Idelalisib in Waldenström macroglobulinemia: high incidence of hepatotoxicity. Leuk Lymphoma. 2017 04; 58(4):1002-1004.
    View in: PubMed
    Score: 0.169
  41. Renal disease related to Waldenström macroglobulinaemia: incidence, pathology and clinical outcomes. Br J Haematol. 2016 Nov; 175(4):623-630.
    View in: PubMed
    Score: 0.168
  42. Histological transformation to diffuse large B-cell lymphoma in patients with Waldenström macroglobulinemia. Am J Hematol. 2016 10; 91(10):1032-5.
    View in: PubMed
    Score: 0.168
  43. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood. 2016 08 11; 128(6):827-38.
    View in: PubMed
    Score: 0.167
  44. Rituximab intolerance in patients with Waldenström macroglobulinaemia. Br J Haematol. 2016 08; 174(4):645-8.
    View in: PubMed
    Score: 0.160
  45. Survival outcomes of secondary cancers in patients with Waldenström macroglobulinemia: An analysis of the SEER database. Am J Hematol. 2015 Aug; 90(8):696-701.
    View in: PubMed
    Score: 0.155
  46. Incidence of secondary malignancies among patients with Waldenström macroglobulinemia: An analysis of the SEER database. Cancer. 2015 Jul 01; 121(13):2230-6.
    View in: PubMed
    Score: 0.153
  47. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: an analysis of the Surveillance, Epidemiology and End Results database. Br J Haematol. 2015 Apr; 169(1):81-9.
    View in: PubMed
    Score: 0.150
  48. Survival trends in Waldenström macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood. 2014 Jun 19; 123(25):3999-4000.
    View in: PubMed
    Score: 0.145
  49. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenström's macroglobulinemia. Blood. 2014 Jul 24; 124(4):503-10.
    View in: PubMed
    Score: 0.144
  50. A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas. Blood Adv. 2022 Mar 07.
    View in: PubMed
    Score: 0.062
  51. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood. 2021 11 18; 138(20):1966-1979.
    View in: PubMed
    Score: 0.061
  52. Diagnostic Next-generation Sequencing Frequently Fails to Detect MYD88L265P in Waldenström Macroglobulinemia. Hemasphere. 2021 Aug; 5(8):e624.
    View in: PubMed
    Score: 0.059
  53. Cell-free DNA analysis for detection of MYD88L265P and CXCR4S338X mutations in Waldenström macroglobulinemia. Am J Hematol. 2021 07 01; 96(7):E250-E253.
    View in: PubMed
    Score: 0.058
  54. Bone marrow involvement and subclonal diversity impairs detection of mutated CXCR4 by diagnostic next-generation sequencing in Waldenström macroglobulinaemia. Br J Haematol. 2021 08; 194(4):730-733.
    View in: PubMed
    Score: 0.058
  55. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J. 2020 01 31; 10(1):12.
    View in: PubMed
    Score: 0.054
  56. Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Adv. 2020 01 14; 4(1):141-153.
    View in: PubMed
    Score: 0.053
  57. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol. 2019 01; 184(2):242-245.
    View in: PubMed
    Score: 0.049
  58. BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mechanism. Blood. 2018 05 03; 131(18):2047-2059.
    View in: PubMed
    Score: 0.047
  59. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood. 2017 05 04; 129(18):2519-2525.
    View in: PubMed
    Score: 0.044
  60. Prospective, Multicenter Clinical Trial of Everolimus as Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Clin Cancer Res. 2017 May 15; 23(10):2400-2404.
    View in: PubMed
    Score: 0.043
  61. Ibrutinib penetrates the blood brain barrier and shows efficacy in the therapy of Bing Neel syndrome. Br J Haematol. 2017 10; 179(2):339-341.
    View in: PubMed
    Score: 0.042
  62. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016 06 23; 127(25):3237-52.
    View in: PubMed
    Score: 0.041
  63. Targeting Myddosome Assembly in Waldenstrom Macroglobulinaemia. Br J Haematol. 2017 06; 177(5):808-813.
    View in: PubMed
    Score: 0.041
  64. To select or not to select? The role of B-cell selection in determining the MYD88 mutation status in Waldenström Macroglobulinaemia. Br J Haematol. 2017 03; 176(5):822-824.
    View in: PubMed
    Score: 0.041
  65. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol. 2016 Mar; 172(5):735-44.
    View in: PubMed
    Score: 0.040
  66. Ibrutinib in previously treated Waldenström's macroglobulinemia. N Engl J Med. 2015 Apr 09; 372(15):1430-40.
    View in: PubMed
    Score: 0.038
  67. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 Wild-type and CXCR4 WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015 Jul; 170(1):134-8.
    View in: PubMed
    Score: 0.038
  68. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenström macroglobulinaemia cells. Br J Haematol. 2015 Mar; 168(5):701-7.
    View in: PubMed
    Score: 0.037
  69. Waldenström macroglobulinemia. Hematol Oncol Clin North Am. 2014 Oct; 28(5):945-70.
    View in: PubMed
    Score: 0.037
  70. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Leukemia. 2015 Jan; 29(1):169-76.
    View in: PubMed
    Score: 0.036
  71. Detection of MYD88 L265P in peripheral blood of patients with Waldenström's Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia. 2014 Aug; 28(8):1698-704.
    View in: PubMed
    Score: 0.035
Connection Strength
The connection strength for co-authors is the sum of the scores for each of their shared publications.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.