Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Miriam Moscovitch-Lopatin, Ph.D.

Title
Institution
Department
Address
Phone
Fax

Bibliographic
Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
  1. Safety, tolerability, and efficacy of PBT2 in Huntington's disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015 Jan; 14(1):39-47. PMID: 25467848.
    Citations: 11     Fields:    Translation:HumansCTClinical Trials
  2. Moscovitch-Lopatin M, Goodman RE, Eberly S, Ritch JJ, Rosas HD, Matson S, Matson W, Oakes D, Young AB, Shoulson I, Hersch SM. HTRF analysis of soluble huntingtin in PHAROS PBMCs. Neurology. 2013 Sep 24; 81(13):1134-40. PMID: 23966247.
    Citations: 1     Fields:    Translation:HumansCells
  3. Moscovitch-Lopatin M, Weiss A, Rosas HD, Ritch J, Doros G, Kegel KB, Difiglia M, Kuhn R, Bilbe G, Paganetti P, Hersch S. Optimization of an HTRF Assay for the Detection of Soluble Mutant Huntingtin in Human Buffy Coats: A Potential Biomarker in Blood for Huntington Disease. PLoS Curr. 2010 Dec 29; 2:RRN1205. PMID: 21278900.
    Citations: 6     
  4. Weiss A, Grueninger S, Abramowski D, Giorgio FP, Lopatin MM, Rosas HD, Hersch S, Paganetti P. Microtiter plate quantification of mutant and wild-type huntingtin normalized to cell count. Anal Biochem. 2011 Mar 15; 410(2):304-6. PMID: 21134349.
    Citations: 8     Fields:    Translation:HumansCells
  5. Steiger J, Nickerson PW, Steurer W, Moscovitch-Lopatin M, Strom TB. IL-2 knockout recipient mice reject islet cell allografts. J Immunol. 1995 Jul 01; 155(1):489-98. PMID: 7602120.
    Citations: 24     Fields:    Translation:AnimalsCells
  6. Stevens C, Lipman M, Fabry S, Moscovitch-Lopatin M, Almawi W, Keresztes S, Peppercorn MA, Strom TB. 5-Aminosalicylic acid abrogates T-cell proliferation by blocking interleukin-2 production in peripheral blood mononuclear cells. J Pharmacol Exp Ther. 1995 Jan; 272(1):399-406. PMID: 7815356.
    Citations: 13     Fields:    Translation:HumansCells
  7. Díaz-Gallo C, Moscovitch-Lopatin M, Strom TB, Kelley VR. An anergic, islet-infiltrating T-cell clone that suppresses murine diabetes secretes a factor that blocks interleukin 2/interleukin 4-dependent proliferation. Proc Natl Acad Sci U S A. 1992 Sep 15; 89(18):8656-60. PMID: 1528876.
    Citations: 3     Fields:    Translation:AnimalsCells
  8. Moscovitch-Lopatin M, Petrillo RJ, Pankewycz OG, Hadro E, Bleackley CR, Strom TB, Wieder KJ. Interleukin 2 counteracts the inhibition of cytotoxic T lymphocytes by cholera toxin in vitro and in vivo. Eur J Immunol. 1991 Jun; 21(6):1439-44. PMID: 1646113.
    Citations: 2     Fields:    Translation:HumansAnimalsCells
  9. Walz G, Zanker B, Wieder K, Hadro E, Moscovitch-Lopatin M, Smith BR, Strom TB. Similar effects of cyclosporine and verapamil on lymphokine, interleukin 2 receptor, and proto-oncogene expression. Transplantation. 1989 Feb; 47(2):331-4. PMID: 2645720.
    Citations:    Fields:    Translation:Humans
  10. Melton LB, Lakkis F, Moscovitch-Lopatin M, Smith BR, Williams JM, Rosoff PM, Strom TB. Antibody valence and induced signal transduction: the role of antibody valence in anti-CD3-induced signal transduction in isolated normal T cells. Clin Immunol Immunopathol. 1989 Feb; 50(2):171-83. PMID: 2521583.
    Citations:    Fields:    Translation:HumansCells
  11. Zanker B, Walz G, Wieder KJ, Moscovitch-Lopatin M, Smith BR, Strom TB. Verapamil selectively inhibits expression of interleukin-2 messenger RNA in mitogen activated mononuclear blood cells. Transplant Proc. 1989 Feb; 21(1 Pt 1):85-7. PMID: 2784906.
    Citations: 1     Fields:    Translation:HumansCells
  12. Moscovitch M, Grossman Z, Rosen D, Berke G. Maturation of cytolytic T lymphocytes. Cell Immunol. 1986 Oct 01; 102(1):52-67. PMID: 3492278.
    Citations: 1     Fields:    Translation:AnimalsCellsPHPublic Health
  13. Kaufmann Y, Moscovitch M, Robb RJ, Rosenberg SA, Berke G. Antigen/mitogen induced cytolytic activity and IL-2 secretion in memory-like CTL-hybridomas. Adv Exp Med Biol. 1985; 184:535-50. PMID: 3929574.
    Citations: 1     Fields:    Translation:AnimalsCells
  14. Moscovitch M, Kaufmann Y, Berke G. Memory CTL-hybridoma: a model system to analyze the anamnestic response of cytolytic T lymphocytes. J Immunol. 1984 Nov; 133(5):2369-74. PMID: 6332847.
    Citations: 1     Fields:    Translation:AnimalsCells
  15. Moscovitch M, Slavin S. Anti-tumor effects of allogeneic bone marrow transplantation in (NZB X NZW)F1 hybrids with spontaneous lymphosarcoma. J Immunol. 1984 Feb; 132(2):997-1000. PMID: 6361137.
    Citations: 7     Fields:    Translation:Animals
  16. Berke G, Rosen D, Moscovitch M. T lymphocyte-mediated cytolysis. III. Delineation of mechanisms whereby mitogenic and non-mitogenic lectins mediate lymphocyte-target interaction. Immunology. 1983 Aug; 49(4):585-92. PMID: 6603417.
    Citations: 2     Fields:    Translation:AnimalsCells
  17. Moscovitch M, Slavin S. Regulation of the immune response in experimental models of autoimmune disorders. II. Induction of suppressor cells of the mixed lymphocyte culture in adult (NZB x NZW)F1 mice using total lymphoid irradiation. J Clin Lab Immunol. 1983 Jun; 11(2):67-74. PMID: 6224019.
    Citations:    Fields:    Translation:AnimalsCells
  18. Moscovitch M, Slavin S. Regulation of the immune response in experimental models of autoimmune disorders: I. Immunocompetence and transplantation tolerance in female (NZB X NZW)F1 hybrid mice immunosuppressed with total lymphoid irradiation and in reconstituted bone marrow chimeras. J Clin Lab Immunol. 1983 Apr; 10(4):185-91. PMID: 6345783.
    Citations: 1     Fields:    Translation:Animals
  19. Zan-Bar I, Barzilay M, Moscovitch M, Slavin S. Regulation of the immune response in experimental models of autoimmune disorders: resistance of (NZB X NZW)F1 mice to tolerance induction in vivo. Clin Exp Immunol. 1983 Mar; 51(3):558-64. PMID: 6851246.
    Citations:    Fields:    Translation:Animals
  20. Moscovitch M, Rosenmann E, Neeman Z, Slavin S. Successful treatment of autoimmune manifestations in MRL/l and MRL/n mice using total lymphoid irradiation (TLI). Exp Mol Pathol. 1983 Feb; 38(1):33-47. PMID: 6339270.
    Citations: 3     Fields:    Translation:Animals
Local representatives can answer questions about the Profiles website or help with editing a profile or issues with profile data. For assistance with this profile: HMS/HSDM faculty should contact feedbackcatalyst.harvard.edu. For faculty or fellow appointment updates and changes, please ask your appointing department to contact HMS. For fellow personal and demographic information, contact HMS Human Resources at human_resourceshms.harvard.edu. For faculty personal and demographic information, contact HMS Office for Faculty Affairs at facappthms.harvard.edu.
Moscovitch-Lopatin's Networks
Click the
Explore
buttons for more information and interactive visualizations!
Concepts (142)
Explore
_
Co-Authors (7)
Explore
_
Similar People (60)
Explore
_
Same Department 
Explore
_
Funded by the NIH/NCATS Clinical and Translational Science Award (CTSA) program, grant number UL1TR001102, and through institutional support from Harvard University, Harvard Medical School, Harvard T.H. Chan School of Public Health, Beth Israel Deaconess Medical Center, Boston Children's Hospital, Brigham and Women's Hospital, Massachusetts General Hospital and the Dana Farber Cancer Institute.