Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

Targeting the p110beta Isoform of PI3 Kinase in Pten Null Tumors


Biography

Overview
The PI3 Kinase pathway is a leading candidate for targeted tumor therapy at this time. This pathway is frequently activated via mutation in both commonly occurring and rare tumor types. Current PI3K directed therapies are targeted to the catalytic subunits of the so-called Class I enzymes. Of the four Class I isoforms, only p110beta and p110beta are expressed in all tissues. Both the p110beta and p110beta isoforms appear to play distinct roles in oncogenic transformation, and, interestingly, isoform functionality varies according to tumor type. Only p110beta is activated by mutations in human tumors. Experiments with conditional knockout mice and shRNAs in human tumor cell lines have shown that p110beta is the key isoform for signaling from oncogenic receptor tyrosine kinases as well as oncogenes such as ras or polyoma middle T antigen. Surprisingly p110beta has been shown to be key for tumors featuring Pten loss, though mechanistic understanding of this data has been lacking. The roles of the two isoforms in insulin signaling are also quite distinct, with p110beta carrying the larger part of the signal, suggesting that inhibiting individual isoforms could have fewer side-effects than the pan inhibitors now entering the clinic. Thus we are excited that the differences in the roles of the isoforms may be exploited to make safer second-generation drugs for PI3Ks. While pharma has concentrated on p110beta specific inhibitors, we have worked to develop a tool compound, Kin-193, that can be used to treat Pten null tumors in mice via inhibition of p110beta. In this grant we seek to understand the mechanism(s) by which p110beta is specifically activated in Pten null tumors, to characterize Kin-193's effects on human xenograft tumors in mice, and to determine how resistance to p110beta inhibitors may arise.
R01CA172461
ZHAO, JEAN

Time
2013-01-01
2017-12-31
Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.