Harvard Catalyst Profiles

Contact, publication, and social network information about Harvard faculty and fellows.

Login and Edit functionaility are currrently unavailable.

Current Student Opportunity

Available: 12/15/12, Expires: 12/31/30

We strive to discover genomic events that cause human cancers and infectious causes for diseases of unknown origin. We then seek to apply these discoveries to improving diagnosis and treatment for these diseases. One particular focus is lung cancer pathogenesis and targeted therapy.

Somatic genetic alterations in cancer: We use genome-scale approaches to discover chromosomal alterations and cancer-causing mutations, working closely with colleagues at the Broad Institute. Our group is active in The Cancer Genome Atlas (TCGA) project to perform multi-modality analyses of human cancers.

Functional analysis of lung cancer genes: We work to understand transformation by the major oncogenes that cause lung cancer, focusing on EGFR, KRAS, and NKX2-1, and to apply this understanding to lung cancer therapy. For EGFR, we demonstrated that distinct mutations are differentially sensitive or resistant to distinct inhibitors (Greulich et al., 2005), establishing the concept of mutant-selective therapy. We are now studying a large number of novel oncogenic mutants identified in genome sequencing screens (Ding et al., 2008 and Imielinski et al., submitted) and are continuing to pursue targeted therapies in the EGFR and FGFR pathways.

Discovery of pathogenic microbes: We developed a genomic approach to discover microbial sequences in cryptic infectious diseases, by sequencing nucleic acids from diseased tissues and removing sequences that match the human genome computationally, leaving microbial sequences (Weber et al., 2002). We are applying these methods to cancers and to inflammatory and auto-immune diseases using next-generation sequencing. Recently, we identified an enrichment of Fusobacterium nucleatum in colorectal carcinoma (Kostic et al., 2011) and are studying the role of Fusobacterium in cancer pathogenesis.

Funded by the NIH National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program, grant number UL1TR002541.